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ABSTRACT

The human cerebral cortex is a highly foliated structure that supports the

complex cognitive abilities of humans. The cortex is divided by its cytoarchitectural

characteristics that can be approximated by the folding pattern of the cortex. Psy-

chiatric and neurological diseases, such as Huntington’s disease or schizophrenias, are

often related with structural changes in the cerebral cortex. Detecting structural

changes in different regions of cerebral cortex can provide insight into disease biol-

ogy, progression and response to treatment. The delineation of anatomical regions

on the cerebral cortex is time intensive if performed manually, therefore automated

methods are needed to perform this delineation. Magnetic Resonance Imaging (MRI)

is commonly used to explore the structural change in patients with psychiatric and

neurological diseases.

This dissertation proposes a fast and reliable method to automatically par-

cellate the cortical surface generated from MR images. A fully automated pipeline

has been built to process MR images and generate cortical surfaces associated with

parcellation labels. First, genus zero cortical surfaces for each hemisphere of a subject

are generated from MR images. The surface is generated at the parametric boundary

between gray matter and white matter. Geometry features are calculated for each

cortical surface to as scalar values to drive a multi-resolution spherical registration

that can align two cortical surfaces together in the spherical domain. Then, the labels

on a subject’s cortical surface are evaluated by registering a subject’s cortical sur-
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face with a population atlas and combining the information of prior probabilities on

the atlas with the subject’s geometry features. The automated parcellation has been

tested on a group of subjects with various cerebral cortex structures. It shows that

the proposed method is fast (takes about 3 hours to parcellate at one hemisphere)

and accurate (with the weighted average Dice ∼ 0.86).

The framework of this dissertation will be as follows: the first chapter is about

the introduction, including motivation, background, and significance of the study.

The second chapter describes the whole pipeline of the automated surface parcellation

and focuses on technical details of every method used in the pipeline. The third

chapter presents results achieved in this study and the fourth chapter discusses the

results and draws a conclusion.
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ABSTRACT

The human cerebral cortex is a highly foliated structure that supports the

complex cognitive abilities of humans. The cortex is divided by its cytoarchitectural

characteristics that can be approximated by the folding pattern of the cortex. Psy-

chiatric and neurological diseases, such as Huntington’s disease or schizophrenias, are

often related with structural changes in the cerebral cortex. Detecting structural

changes in different regions of cerebral cortex can provide insight into disease biol-

ogy, progression and response to treatment. The delineation of anatomical regions

on the cerebral cortex is time intensive if performed manually, therefore automated

methods are needed to perform this delineation. Magnetic Resonance Imaging (MRI)

is commonly used to explore the structural change in patients with psychiatric and

neurological diseases.

This dissertation proposes a fast and reliable method to automatically par-

cellate the cortical surface generated from MR images. A fully automated pipeline

has been built to process MR images and generate cortical surfaces associated with

parcellation labels. First, genus zero cortical surfaces for each hemisphere of a subject

are generated from MR images. The surface is generated at the parametric boundary

between gray matter and white matter. Geometry features are calculated for each

cortical surface to as scalar values to drive a multi-resolution spherical registration

that can align two cortical surfaces together in the spherical domain. Then, the labels

on a subject’s cortical surface are evaluated by registering a subject’s cortical sur-
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face with a population atlas and combining the information of prior probabilities on

the atlas with the subject’s geometry features. The automated parcellation has been

tested on a group of subjects with various cerebral cortex structures. It shows that

the proposed method is fast (takes about 3 hours to parcellate at one hemisphere)

and accurate (with the weighted average Dice ∼ 0.86).

The framework of this dissertation will be as follows: the first chapter is about

the introduction, including motivation, background, and significance of the study.

The second chapter describes the whole pipeline of the automated surface parcellation

and focuses on technical details of every method used in the pipeline. The third

chapter presents results achieved in this study and the fourth chapter discusses the

results and draws a conclusion.
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CHAPTER 1
INTRODUCTION

1.1 Structures and Functions of Human
Cerebral Cortex

The brain is the center of the nervous system of a human being. It has the most

complex biological structure known. It is made of soft tissue floating in cerebrospinal

fluid and protected by the skull. Between the brain and skull, there is a succession

of three-layer connective tissue membranes called meninges. Major arteries and veins

that supply the brain lie among the meninges.

Figure 1.1: The major components of an adult human brain.

Source:http://www.enchantedlearning.com.

An adult human brain can be divided into three components: cerebrum, cere-

bellum, and brainstem[1] (see Fig.1.1). The cerebrum consists of two cerebral hemi-

spheres (left and right hemisphere) and the diencephalon. Left and right cerebral

hemispheres are separated by the medial longitudinal fissure. Each hemisphere is

http://www.enchantedlearning.com
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covered by a layer of white matter, with a layer of gray matter on top of it. The gray

matter is about 2-4 mm thick and is also called cerebral cortex. The gray matter is

composed of nerve cells, while the white matter is composed of myelinated nerve cell

axons that carry information between nerve cells and the spinal cord. The cerebral

cortex is a highly folded structure and the size of it is significantly bigger in human

beings than in any other kind of animals. Topographically, the surface of the cerebral

cortex appears as a highly convoluted structure with sulci buried deeply between gyri.

A huge amount of the surface area, along with neurobiological information that could

be clinically relavent, is buried in the groove of the folded structure. If we could iron

the surface of cerebral cortex to be flat, the surface area would become 4 times of the

area of the exposed cortex[2].

Figure 1.2: Brain lobes and fissures. The positions of central sulcus and Sylvian
fissure on lateral view of the labeled surface of one hemisphere of human cerebral
cortex (dark blue: frontal lobe; tan: parietal lobe; light blue: temporal lobe; red:
occipital lobe).
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(a) (b)

Figure 1.3: Brodmann’s areas of human cerebral cortex[3]. (a) The lateral surface.
(b) The medial surface.

The cerebral cortex is the most important part of the human brain, not only

because it contains two-thirds of the neuronal mass and three-quarters of the synapses,

but also because it plays a key role in high-level human functions, like memory,

language, consciousness, planning, etc. Each hemisphere of the cerebral cortex can

be divided into four (frontal, temporal, parietal, and occipital) lobes, by some obvious

sulci or gyri landmarks on the cortex, as shown in Fig. 1.1. For example, the central

sulcus can be used to separate the parietal lobe from the frontal lobe, and the lateral

sulcus (Sylvian fissure) can be used to separate the temporal lobe from the frontal

lobe (see Fig. 1.2).

In 1909, a German neurologist, Korbinian Brodmann, published his research

on cortical cytoarchitectonics. He labeled 52 distinct areas (see Fig. 1.3) in human cor-

tex according to their cytoarchitectonic characteristics using the Nissl stain[3]. Those

areas are well known as Brodmann’s areas and have been widely used in the study

of brain structures and functions since they were published. In 1925, Economo and
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Koskinas published another atlas of cytoarchitectonics of the adult human cerebral

cortex with 107 areas[4].

Brodmann et al. labeled the subregions of human cerebral cortex based on

“looking” differently under the microscope. The question is, do those cytoarchitec-

turally different areas also have different functionalities? Scientists have been working

on understanding the relationship between structure and function of human brain for

centuries. In the Middle Ages, philosophers and naturalists predicted that the mental

“behaviors” could be localized in the “three cerebral ventricles”. At the beginning

of the 19th century, the anatomist, Gall, first described the difference between the

gray matter and the white matter. He also pointed out that human “functions” were

controlled by particularly and strictly localized areas of the brain.

Brodmann believed that “the function of an organ is correlated with its ele-

mentary histological structure”. Sanides did the cyto- and myeloarchitecture studies

of the human frontal lobe[5]. Sanides’s work verified the fact that the shape of the

nerve cells is modifiable and the volume and arrangement of nerve cells are relative

to their functions. The cyto-myeloarchitectural study led to the conclusion that the

vast majority of outlines of the human cerebral cortex are located in the indentations

(sulci) of the cortical surface. Based on this conclusion, Sanides defined 8 “zones”

of the frontal lobe and studied the functions of the frontal “zones”[5]. In late 20th

century, a neuroscientist from Johns Hopkins University, Vernon Mountcastle, dis-

covered the columnar organization of the neocortex[6]. According to Mountcastle’s

discovery, areas of the cerebral cortex are composed of modules. Those modules are
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also called “cortex columns”. Each module can be looked at as a local neural circuit

that processes information from its input to its output, so it can be treated as a

functional unit. And each module consists of basic functional units, “minicolumns”.

Modules are grouped into cortical areas according to their common or dominating

extrinsic connections, which explains why certain functions can be located on certain

areas of the brain. For example, the primary motor and sensory cortices have single

dominating extrinsic connections and these areas also have distinct cytoarchitectural

identifications from other cortices. His discovery shed light on the research of the

relationship between structure and function of the human brain.

Before any medical imaging technology occurred, functions of human cerebral

cortex can be observed by the responses of subjects who have partial cortex damage

caused either by brain lesions or surgical ablation. That’s how people in the middle

19th century recognized that the anterior part of cerebral cortex is more related with

motor functions than the posterior part of it and that the posterior part of cerebral

cortex is more related with sensory than the anterior part of it.

Later in modern science, Positron-emission tomography (PET) and functional

magnetic resonance imaging (fMRI) are two types of most commonly used technolo-

gies to study functions in the human brain. Luria divided the cortex into two func-

tional parts: one is the sensory unit and the other is the motor unit[7]. Overall, the

cerebral cortex can be divided into three types of areas and each of these areas itself

is hierarchical in structure: (1) motor area, including primary and secondary motor

areas, (2) sensory area, including primary and secondary sensory areas, and (3) ter-
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tiary, or association areas. Here, the primary area receives impulses from or sends

impulses to the periphery; the secondary area is where the incoming information is

processed; and the tertiary area is for the complex forms of mental activity requiring

the concerted participation of many cortical areas. It is well accepted to provide the

Brodmann area numbers associated with activation foci in a brain functional imaging

study for publications. Table 1.1 shows the functions of a human cerebral cortex with

corresponding Brodmann’s area by numbers.

Table 1.1: Brodmann’s Numbers at Functional Areas on the Cerebral Cortex

Function Brodmann’s Area
Vision Primary 17

Secondary 18, 19, 20, 21, 37
Auditory Primary 41
Body Senses Primary 1, 2, 3

Sensory, tertiary 7, 22, 37, 39, 49
Motor Primary 4

Secondary 6
Eye movement 8
Speech 44

Motor, tertiary 9, 10, 11, 45, 46, 47

Source: Kolb and Whishaw’s study[8].

The cerebral cortex is also responsible for “higher-order” functions including

language, memory, perception, thought, and planning. Specifically, each lobe of the

cerebral cortex has specific functions[9]. The frontal lobe is involved in motor control

and cognitive activities, such as long-term memory, planning, predicting the conse-
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quences in the future for the present behaviors and making decisions. The temporal

lobe is involved in auditory functions, language, and visual recognition. The parietal

lobe is involved in sensory perception, attention, spatial reasoning, and language.

The functions of the occipital lobe are mostly related with vision. The occipital lobe

processes the visual information and passes its conclusions to the parietal lobe and

the temporal lobe.

1.2 Cortical Morphology Caused by Brain
Diseases

Brain disease includes any abnormality that happens in the head, such as

headaches, brain tumors, vascular problems, infections, epilepsy, head trauma, and

demyelinating diseases. However, the research about the relationship of brain dis-

eases with changes of brain structures is more complicated. Brain structures can be

affected by the brain disease, and also by other factors, such as gender, age, gene,

environment, etc. By using the proper groups of control subjects, the deformation

of anatomical structures can reflect the underlying pathology and may determine the

clinical phenomenology. The deformation of brain structures can be shrinkage (at-

rophy) or enlargement of certain regions. Morphometric study is commonly used to

detect the structural changes, like size and shape of objects[10][11][12]. The combina-

tion of morphometric study with modern medical imaging technology can be useful

for diagnosis and treatment of brain diseases.

Headaches are the most common kind of brain diseases, and most headaches

are related with migraines. The migraine is a common, chronic, and usually inherited

neurovascular disorder[13]. Its syndrome involves a moderate to severe, recurrent,
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unilateral or bilateral headache, which could last for hours or days, accompanied by

nausea, photophobia, or phonophobia[14]. The trigeminal pain of migraine is as-

sociated with activations of several areas in cerebral cortex, such as insular cortex,

anterior cingular cortex, and somatosensory cortex[15]. Until recently a common

belief in the scientific community was that people who suffered from headaches, in-

cluding migraines, tension type headaches and cluster headaches, had abnormal brain

function yet completely normal brain structure. However, in 1999 May et al. reported

that a significant structural difference in gray matter density between patients with

cluster headaches and the healthy control group was detected by a voxel-based mor-

phometric (VBM) study on headaches[16]. The researchers in this study acquired

structural T1 weighted images using magnetic resonance imaging (MRI). Then in

2005, the chronic tension type headache was shown to be related with significant

cell loss in gray matter[17]. The relationship between migraine and brain structural

change is still under debate. One group proposed that no change can be detected in

the brain structure of migraine patients[11], while another study showed that struc-

tural difference can be detected in the gray matter using a high-field (3 Tesla) MRI

scanner[10].

Brain tissues shrink with aging. The first detection of neuron loss in an ag-

ing brain was reported by Brody in 1955[18]. Good et al. proposed that the global

volumn of the gray matter decreases linearly with age while the global volumn of the

white matter does not[12]. Magnotta et al. performed a study about the quantitative

measurement of gyrification in the human brain[19]. It shows that shapes of gyri and
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sulci of cerebral cortex change significantly along with aging. Gyri become thinner

and more curved, while sulci become more flattened. Another study evaluating gen-

der differences in brain aging shows that the brain size changes significantly greater

in men than in women for the peripheral (sulcal) cerebrospinal fluid volume, the lat-

eral (sylvian) fissure cerebrospinal fluid volume, and the area of the parieto-occipital

region[20].

A number of psychiatric and neurological disorders have been shown to have ac-

celerated age adjusted atrophy of the cerebral cortex. Double et al.[21] proposed that

the significant brain atrophy may not be a consequence of the advancing age and that

it could be a suggestion of Alzheimer’s Disease (AD). It is well accepted among scien-

tists that the cerebral atrophy always happens to AD patients[22]. The medial tem-

poral lobe (MTL) is thought to be the most vulnerable region where the AD related

cerebral atrophy could happen, so a large amount of publications have focused on the

study of volumetric measurements of MTL in MR images[23][24][25][26][27][28][29][30][31].

People with hippocampal atrophies detected by MRI, along with memory complaints,

may be considered to be in the early stage of AD[32][33][34][35].

Schizophrenia is a major type of mental disorder. Schizophrenia does not just

cause mental disorders; schizophrenic patients die 12-15 years earlier than the average

population. It causes more loss of lives compared with other major mortal diseases

like cancer. It has been shown that schizophrenia syndromes are associated with the

dysfunction of the prefrontal cortex[36][37][38][39]. Andreasen et al. studied the re-

lationship between ventricular enlargements with the positive or negative symptoms
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of schizophrenia, which presented the potential possibility of classifying schizophre-

nia based on a measure of brain structure[40]. Andreasen reviewed the potential

role of structural MRI of a human brain in the morphometric studies of abnormal

and normal brains, and pointed out that the structural change detected in vivo MR

images of human brain could help us better understand the underlying mechanisms

and the development of psychiatric diseases such as schizophrenia[41]. With the de-

velopment of modern neuroimaging techniques in the past decades, a large number

of studies have been performed to evaluate brain structure changes associated with

schizophrenia and its progression. Meta-analysis shows that schizophrenic patients

have overall smaller cranial or cerebral size[42][43], with enlarged ventricles[42][44].

Goldstein, et al. studied the structural difference between schizophrenia patients and

healthy subjects[45]. They divided the neocortex into 48 bilateral PUs (parcellation

units) based on major fissures and specified single nodal points. Significant cortical

abnormalities were discovered in schizophrenia patients, which were localized primar-

ily in regions of prefrontal and medial paralimbic cortices. The major reductions

of frontal lobe in schizophrenia patients were in the middle, medial and right-sided

fronto-orbital cortices. Yamasue, et al.[46] parcellated the prefrontal and temporal

lobes of 27 schizophrenia patients and 27 age-, gender-, and parental socioeconomic-

status-matched healthy control subjects into 15 subregions in each hemisphere (30

regions of each subject) on high resolution MRI scans of them. They concluded

that the most significant gray matter reductions happens in the bilateral anterior

cingulated gyrus (ACG), compared with healthy subjects. Patients with dysbindin-
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associated schizophrenia were founded to have reduced occipital and prefrontal brain

volumes[47].

Parkinson’s Disease (PD) is defined by NIH (National Institutes of Health)

to be one of a group of conditions called motor system disorders, which are the

result of the loss of dopamine-producing brain cells[48]. The disease is characterized

by four primary symptoms: rest tremor, bradykinesia, rigidity, and loss of postural

reflexes. Motor cortex dysfunction was revealed by functional studies of human brains

with PD[49], and cortex abnormalities of PD have been studied to understand the

pathology of brain dysfunctions caused by the disease. VBM was used to study the

cerebral atrophy in PD with and without dementia[50]. Bilateral reductions of the

gray matter volume in the temporal lobe and occipital lobe were found in Parkinson’s

Disease with dementia (PDD) patients. The right frontal lobe and the left parietal

lobe were also shown to have volume reductions by comparison with healthy control

subjects. Only reduced gray matter in the frontal lobe was shown in PD without

dementia, compared with control subjects. By comparing PDD patients with PD

patients, significant bilateral gray matter atrophy in the occipital lobe was observed

in PDD patients.

Huntington’s Disease (HD) is a type of neurodegenerative disease in the human

brain. It is a progressive, genetic, and familial disorder which can be passed down from

parents to children. From the genetic point of view, HD is an autosomal-dominant

disorder because of an expanded CAG repeat on the short arm of chromosome 4[51].

HD is characterized by progressive motor disorders, psychiatric disturbances, and cog-
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nitive declines. Significant losses in the cerebral cortex volume were detected by the

study of Monte, et al[52]. The study also showed that the size of the ventricular sys-

tem is much bigger in HD patients than in healthy control subjects. The global brain

atrophy in HD patients was also reported by Henley et al[53]. The cross-sectional and

longitudinal studies were performed to choose a biomarker for the rate of brain neu-

rodegenerative changes among gray matter, white matter, and cerebral spinal fluid

(CSF) in HD patients[54]. Quantitative measurements of those brain structures were

made in MR images among groups of subjects with presymptomatic to advanced

HD. All of the subjects had CAG repeat expansion in their genes. The study showed

that both of the gray matter volume and the white matter volumn decrease in the

presymptomatic subjects, while CSF volume not only increases years before onset but

it is also related with the CAG mutation size. Hobbs et al.[55] did a longitudinal MR

imaging study showing that differences in caudate and ventricular volumes between

HD patients and healthy control occurr earlier than motor symptoms. Aylward et al.

published that the change of the volume in the white matter could be significantly

related with HD[56]. The same PREDICT-HD group from Iowa also did the research

among prodromal HD patients and healthy controls. They found signifiant atrophy

in parietal lobe and occipital lobe of prodromal HD compared to controls. Five re-

gions in the cerebral cortex were found to have significantly smaller surface areas as

compared to controls[57].

In summary, we can see that changes in brain structures can provide a biomarker

to aging, neurodegenerative diseases, dementia, or other brain disorders. In order to
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detect those changes, the development of MRI technology allows neuroanatomical

structures to be visualized in vivo. Manual tracing of brain structures on MR images

are used commonly to do some quantitative measurements, such as volume, shape,

and tissue characteristics. Automated VBM studies have been used to combine with

advanced image processing techniques, so that there are no human disagreements

among different experts when we use manual tracing. We believe that the automated

parcellation on structural MRI images can help identify subregions of human cerebral

cortex and it can also help us better understand the change of brain structure and

function caused by aging, neurological disease or other diseases in human brain.

1.3 Cerebral Cortex Parcellation

“Parcellation” means to divide into parcels. It is a technique that is used to

label the entire cerebral cortex in neuroanatomical studies. Once the cortex is labeled,

regional quantitative measurements can be made on subregions to help us study and

understand more about the human brain. The human cerebral cortex has been the

major focus of psychiatry to understand the pathophysiology of mental illnesses. As

mentioned in Sec. 1.1, the structure and the function of the human brain is closely

related to each other. Some brain diseases have been observed to be related with

structural changes in some particular regions of cerebral cortex, like medial tempo-

ral lobe in AD patients[23][24][25][26][27][28][29][31], while some other diseases are

related with changes in several regions simultaneously, such as the frontal lobe and

the temporal lobe in Schizophrenia patients[46], the frontal lobe and the parietal lobe

in PD patients[50], etc. In order to understand better about those diseases and the
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brain morphology they could possibly cause, the whole brain parcellation is preferred.

Parcellation is also helpful in the study of cognitive neuroscience with fMRI. fMRI is

a common tool of functional imaging technique of the human brain but it contains

limited structural information, so changes in local circulation and metabolism before

and after the brain responds to some stimuli are often highlighted at the activated

region on the anatomical image/surface of the same subject by image/surface regis-

tration between the functional and anatomical images/surfaces (see Fig. 1.4). With

the development of fMRI technology[58][59] and fMRI data analysis, SNR (signal-

to-noise ratio) has been greatly increased so that task-specific brain activity can be

mapped more precisely on structural MR images[60]. The parcellation of cerebral

cortex can help identify and localize the activated regions for the fMRI study[61], so

that we can define the functional related regions in cerebral cortex. The parcellation

can be performed either on structural MR images or on surfaces generated from them

as shown in Fig. 1.4.

When Brodmann, et al.[3][4][5] identified distinctive areas on the human cere-

bral cortex, they did it based on cytoarchitectonic characteristics, such as the shape

and arrangement of nerve cells. Roland and Zilles published a review paper about

how the cerebral cortex of humans can be parcelled based on structural and func-

tional criteria[62]. According to the paper, criteria that are used to define a cortical

area include cytoarchitecture, myeloarchitecture, the density of neurotransmitter re-

ceptors, the density of neurons, the density of enzymes, the architecture of synapses,

etc. In the functional parcellation of the human cerebral cortex, the population map
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Figure 1.4: A fMRI group study that maps activated motor cortex on the cortical
surface. It can be seen from the mapping which area on cerebral cortex is activated
by the movement of the foot, elbow, thumb, index finger, left fist and lip.

is used to eliminate the inter-individual variation, so that functional domains can

be determined. The correspondence between structure and function of cortical areas

were also studied by Roland and Zilles in the review paper.

Structural MRI does not have the capability of presenting the cytoarchitec-

tonic map of human cerebral cortex in vivo, but high-resolution structural MRI (1.5T,

3T) provides a clear visualization on anatomical landmarks of the human brain in

vivo. It is common to use gyri and sulci as landmarks to define functionally relevant

regions on MR images[63] [64][65]. Rademacher and colleagues used the “limiting

sulci” and a set of coronal planes to do the parcellation on T1 weighted images[66].

Crespo-Facorro and Kim, et al. published a series of papers about how to parcel-

late the frontal lobe[67], the temporal lobe[68], and the whole cerebral cortex[69],

based on multi-modal (T1, T2 and PD weighted) structural MR images. By visu-
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alizing three orthogonal planes (axial, sagittal, and coronal) of MR images and the

3-dimensional rendering of cortical surface simultaneously, Crespo-Facorro and his

colleagues were able to parcel the cerebral cortex into 41 regions[69]. The reliabil-

ity of their parcellation was proved by intra-class correlation study and the validity

(structure-function correlation) of the parcellation was supported by the PET study

in the same institution of the University of Iowa.

Manually labeling the entire cerebral cortex on MR images could be both

labor-intensive and time-consuming. Even an experienced rater with neuroanatomical

knowledge and familiar with the neuroimaging technology needs 12-14 hours to finish

a complete cerebral cortex parcellation for one subject on the regular MR images[69],

and it takes up to a week to finish it on the high-resolution MR images[70]. The

manual parcellation is prone to the intra-rater or the inter-rater variation as well.

Therefore, we propose a fast and automated method to do the parcellation on the

human cerebral cortex using structural MR images, which can produce stable and

reliable results.

Basically, automated parcellation systems try to mimic how manual parcella-

tion does the work by collecting various information including image intensity values,

global position in the brain, local position relative to neighboring brain structures, and

anatomical landmarks[70]. Generally, there are two types of automated approaches

for cortical parcellation on MR images. One approach is based on the image/surface

registration and the other is based on the image/surface segmentation. The basic idea

of the first approach is to register a subject with an atlas. The brain atlas can be a
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single subject randomly selected from the training set or a population atlas generated

from the training set. The deformation field generated from the registration is used

to warp labels from the atlas to the subject. The basic idea of the second approach is

to be able to identify sulci or gyri patterns of cerebral cortex based on image/surface

segmentation methods and to delineate subregions automatically using the identified

sulci or gyri[71][72][73]. This dissertation will discuss about the methodologies of

both approaches in the next chapter but it will focus on the first approach, because

the proposed method is based on the surface registration.

A brain atlas of cortical parcellation provides the anatomic, cytoarchitectonic

or functional labels in a standard coordinate system[74]. The most famous single-

subject atlas is the “Talairach-Tournoux” atlas[75]. The atlas has brain structures

labeled on transverse (axial), sagittal, and coronal slices from the post-mortem brain

of a 60-year-old French woman (the “Talairach Brain”). The Talairach axes are

constructed based on the line connecting the anterior commissure and the posterior

commissure (AC-PC line) of the brain[75](Fig. 1.5a). Only one hemisphere is labeled,

so the symmetry must be assumed. Talairach and Tournoux labeled the brain slices

with anatomical labels, including important sulci and gyri. They also estimated the

Brodmann cytoarchitectonic areas on it (shown as numbers in Fig. 1.5b). They gave

the Brodmann’s numbers based on their estimation on a comparison of the gross

anatomy of the Talairach brain with the well-known map published by Brodmann.

The atlas also described a simple set of scaling (the proportional grid) system that can

be used to transform one brain to another so that they can be roughly matched overall
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based on the brain size and shape. The “Talairach-Tournoux” atlas is a standard atlas

with a standard coordinate system and with both of anatomical and cytoarchitectonic

labels, so it is common that a subject’s brain is registered with the atlas to localize

the activated regions with Brodmann’s numbers in functional imaging studies. The

automated labeling of brain structures can be done in the standard stereotaxic space.

(a) (b)

Figure 1.5: The Talairach atlas and associated coordinate system[76].

Andreasen et al.[77] did automatic volume estimation of large scale human

brain region of interests (ROIs) on MR images. The subject’s MR images are wrapped

into an adapted Talairach atlas by the linear transformation. Then, 12 ROIs are la-

beled on the subject’s brain including brain lobes (frontal, parietal, temporal, and

occipital), cerebellum, and subcortical regions on both hemispheres. Manual de-

lineation of those regions are treated as “gold standard” and used to evaluate the

automatic results.

A database and server called “Talairach Daemon” was development by Lan-
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caster and Fox for neuroanatomical labeling of Talairach coordinates[78][79]. Each

subject’s brain MRI is normalized using Talairach’s coordinates. A “forward trans-

form” (from subject to atlas) method is used to retrieve brain labels by the coordinates

of the brain. The automated labeling system is evaluated by calculating the match-

ing of the automated labels with several reference labels. The results shows a high

dependence on the search range in Talairach space[79]. However, it still needs human

interaction because it is possible that a voxel could get a label that it is unlikely to

belong to. An expert is needed to verify the result and decide whether to accept the

label or not.

The “inverse transform”, which is used to transform a volume of interest (VOI)

from the atlas to a subject and to label the subject’s brain was developed by Collins

and his fellows on MR images[80][81][82]. Linear or non-linear image registration

is used to align the subject’s brain with an atlas (single subject atlas[82] or average

atlas[80][81]). The anatomical labels on the atlas are then mapped to the subject using

the deformation field generated by the image registration. All of the MR images are

normalized into a standard coordinate system of either the standardized Talairach

space[80] or Talairach-like space[81][82]. The method is shown to have over 85%

volumetric overlapping, but it is only used to label certain brain structures and has

not been tested in the whole brain parcellation yet.

Even though “Talairach-Tournoux” atlas provides a standard coordinate sys-

tem and detailed anatomical labels, it is inaccurate[61] (Fig. 1.6). In addition, it uses

Brodmann’s Areas to label brain structures while Brodmann’s Areas are based on
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cytoarchitectural features which may not be able to represent the exact relationship

between functional and structural anatomy in human brain. And it has been shown

that there exists a large inter-subject variability in cytoarchitectonic areas[83][84], so

Brodmann’s labeling cannot be considered as reliable.

Due to the substantial inter-individual variability of the topographic patterns

of human cerebral cortex[85][86], bias exists in a single subject atlas when it is used

as a model for cortical parcellation. The amount of inter-individual variability still

remains from 9 to 18 mm even after an affine stereotaxic normalization[87]. The brain

atlas generated from a large population of subjects has the advantage of showing the

least deviation in shape and surface features over a single subject atlas[88]. Thus, a

good atlas can encode local anatomic variability and also cortical topography. The

construction of population atlas needs to incorporate high-dimensional non-rigid im-

age registration to align the anatomy of a group of subjects together. The size of

high-resolution brain MR images and the complexity of non-rigid intersubject reg-

istration both demand the use of automated computer-based construction of brain

atlases[89][90]. Image registration is the key issue to generate the digital atlas. A

comprehensive survey of the application of various image registration techniques on

brain functional localization was published by Gholipour et al.[60]. Typically, ei-

ther volume registration or surface registration can be used to align different brains

together using their MR images. Volume registration does it by matching the size

and shape of different brains with each other or warping both of them into a stan-

dard brain template, based on voxel intensity values or anatomical features shown in
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(a)

(b)

(c)

Figure 1.6: The overlay of the “Talairach-Tourmoux” atlas on the MNI average atlas
(a) The overlay of “Talairach-Tournoux” atlas on MNI (Montreal Neurological Insti-
tute) average brain of 152 subjects. (b) The overlay of “Talairach-Tournoux” atlas
on MNI average brain of 152 subjects after non-linear correction. (c) The overlay of
“Talairach-Tournoux” atlas on MNI single subject brain after non-linear correction.
(The pictures were copied from Tzourio-Mazoyer’s paper[61])
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T1 or T2 weighted MR images. An anatomical textbook was proposed by Miller et

al., it is an image template with a vector as the pixel value in an ideal coordinate

system. The vector contains intensity values from multi-modality imaging methods,

such as MR T1 and T2 images, CT images, and functional PET images, as well

as anatomical labels and histological information. The informations (labels) in the

textbook are then brought into the coordinates of a new subject by a deformable

image transformation[91]. Iosifescu and his fellows managed to delineate 11 brain

structures based on the atlas-to-subject image registration on MR images. The regis-

tration technique they used is a combination of linear registration on the surface and

elastic registration on the volume images. The resulting deformation field from the

registration is then used to warp manual labels from the atlas to the subject and the

result is evaluated by measuring the volume of the delineated brain structures[92].

However, the propagation of the anatomical labels from the atlas to the subject based

on the image registration is considered to have limited accuracy, so Heckemann et al.

proposed a method of brain MRI segmentation combining the label propagation with

the decision fusion[93]. The decision fusion is an alternative option of average atlas to

eliminate inter-individual variabilities. Heckemann’s combining method is tested on

a dataset of 30 normal brain MR images. Each subject’s brain was manually labeled

with 67 regions. One subject is registered with each of the rest 29 subjects based on

the 3D voxel-based registration using MR images. Thus, the registration can gener-

ate 29 transformations. The resulting transformations are then used to warp labels

from the 29 subjects onto the first subject. Vote rules are used to fuse 29 labels and
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assign an anatomical label to each voxel on the subject. 12 out of 67 brain structures

are selected to verify the method. Sabuncu et al. improved Heckemann’s method by

proposing a probabilistic model to perform decision fusion of labels transferred from

multiple atlases. Alzheimer’s disease related brain structure, hippocampal is included

in their experiment of brain parcellation[94]. In 2010, Heckemann et al. developed

a software called MAPER (multi-atlas propagation with enhanced registration)[95],

which combines tissue classification with deformable image registration to improve

the accuracy of the image-based whole brain parcellation. MAPER has been applied

to automatically label 83 regions covering the whole brain in 816 subjects using T1

weighted MR images. However, the evaluation of the automated labels are mainly

based on visual assessment. The Jaccard Index between segmentations of paired im-

ages acquired at different field strengths was recently reported as 0.802± 0.0146[96].

The surface registration is another option to align subjects with the atlas.

It uses sulci and gyri on the reconstructed surface as anatomical landmarks. The

geometry features that can represent the patterns of sulci and gyri are calculated to

drive the registration. We think the surface registration is a better choice for the

purpose of cerebral cortex parcellation based on MR images:

1. Sulci and gyri are important bio-markers that are often used to separate adja-

cent regions of cerebral cortex. They can be better represented on the cortical

surface than on 3D volumetric MR images, and topographic features such as

curvatures can be easily calculated from the cortical surface[19]

2. It is difficult to identify cortical structures only based on image intensities of
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MRI. According to the study of noninvasive identification of human central

sulcus performed by Towle, et al.[97], the judgments experts could make based

on T1-weighted MRI slices for the location of the cortical primary motor and

the sensory hand area have a mean discrepancy of 25 mm to the direct cortical

mapping results, with a 48 mm discrepancy in the worst case

3. The average atlas generated from volume registration could be more attempted

to blur gyral and sulcal features[98]

4. Due to the highly folded structure of the cerebral cortex, it is impossible to

do some particular measurements such as calculating the distance from two

points along the cortical surface using the 3D volumetric images[99]. Because

of the same reason, a small inaccuracy in volume registration may cause the

same point in cerebral cortex have completely different labels. For example,

the secondary somatosensory and parietal ventral cortex (SII/PV), and the

primary auditory cortex and adjacent areas (AI/AII) locate at opposite banks

of the Sylvian fissure. Because of the lack of capability to separate them with

a major distance in the 3D volumetric image, a small inaccuracy in volume

registration could cause one voxel be mislabeled as the wrong structure which

has a completely different function[100]. Apart from the distance, there are some

other measurements which we can do better on cortical surfaces such as cortical

thickness, curvature and surface area[19][101][102] that have been proved to be

significant for the study of neurodegenerative and psychiatric disorders

In brief, surface registration driven by geometry features of sulci and gyri can
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give us better intersubjects and atlas-to-subject alignments, both of which can benefit

the cerebral cortex parcellation. Here are some of the studies that have been done on

the automated cerebral cortex parcellation based on the surface registration.

FreeSurfer provides a refined tool for automated labeling of cortical surfaces.

An anatomical label is assigned to each location on a cortical surface based on a prob-

abilistic atlas constructed from a manually labeled training dataset[65][103]. Topolog-

ically corrected surfaces can be generated either between the white matter and gray

matter (“white” surface), or between the gray matter and the CSF[104][105]. The

“pial” surface is shown in Fig. 1.7a). FreeSurfer also provides a nice tool to morph

(“inflate”) the cortical surface along the negative direction of the gradient of an en-

ergy function without intersecting itself, so that the information buried inside sulci

can be visualized[106] (Fig. 1.7b). The cortical surface can be further inflated into

a sphere (Fig. 1.7c), while the values to represent the folding pattern of the surface

are calculated during or after the process of inflation[107]. For example, “Average

convexities” are calculated during the inflation to represent the large-scale folding

patterns on the cortical surface as shown in Fig. 1.7b and Fig. 1.7c. Once all of the

cortical surfaces are mapped into the uniform spherical coordinate system, they can

be aligned together by minimizing an energy function which is used to calculate the

difference of folding patterns between two cortical surfaces[99]. Once all of subjects

in the training set are aligned together, an average template can be constructed from

them. In the assumption that the spatial distribution of labels in cerebral cortex can

be modeled by a non-stationary anisotropic Markov random field (MRF), a prob-
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abilistic atlas is constructed based on the prior information of manual labels and

geometry features of each corresponding point across all of subjects in the training

set. After registering a new subject to the atlas, the labels on the new subject can be

predicted using the MRF model. The result of automated parcellation for 36 areas

on an individual subject is shown in Fig. 1.7d.

(a) (b) (c)

(d)

Figure 1.7: Surface representations of the cerebral cortex generated by
FreeSurfer[65][103]. Red represents sulci and green represents gyri in (a), (b) and
(c). (a) shows a pial surface generated from structural MRI of an individual sub-
ject. It is a surface between gray matter and CSF. (b) shows an inflated surface with
convexity values on it. (c) shows an atlas generated on a sphere with the avarege
folding pattern represented by convexity values. (d) shows the result of automated
parcellation of 36 areas on the cortical surface of an individual subject.

Yeo, et al. proposed a fast and landmark-free surface registration method in
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2010. It was applied in the automated cortical surface parcellation using MR scans

of 39 subjects[108]. The detail of the algorithm is discussed in Chap. 2. Cortical

surfaces of 39 left and right hemispheres were extracted from MR images. 36 regions

on each cortical surface were manually labeled by a neuroanatomist. Each surface is

mapped onto a sphere. Each vertex on the surface was associated with multiple geom-

etry features: mean curvature of the cortical surface, mean curvature of the inflated

cortical surface, and average convexity of the cortical surface. The multi-resolution

diffeomorphic demons surface registration is performed to align cortical surfaces in the

spherical domain. A probabilistic atlas is built iteratively while registering a subject

to the atlas until all of the 39 subjects are co-registered. Each vertex of the proba-

bilistic atlas contains the geometry information across 39 subjects at that location in

the the mean and variance of each geometry feature across all of the subjects can be

calculated. Then, 4-fold cross-validation of the automated parcellation is performed

using the co-registered cortical surfaces. The Dice Index is calculated for each label

to evaluate the overlapping of the automated and the manual parcellation.

Sandor and Leahy did a large-scale parcellation on the cortical surface based

on the assumption that anatomically normal brains can be aligned with each other

by global scaling and local deformations[109]. The MR image of a healthy subject is

modeled with a B-spline surface model (Fig. 1.8). Anatomic labels are given to each

point of the surface model. The B-spline surface model is first aligned to the surface

of a new subject by scaling and translating to make it close to the subject’s surface.

Then, the B-spline surface model is deformed by minimizing an energy function to



www.manaraa.com

28

further match with a subject’s surface. Manual labels of brain lobes (frontal, pari-

etal, and temporal lobes) and large sulci labels (central, interhemispheric, and lateral

sulcus) are then transferred from the atlas to the subject, as shown in Fig. 1.9. San-

dor and Leahy’s method is based on elastic deformation of an approximate cortical

surface. It used global scaling instead of a real image registration to align the atlas

with the subject, so it can only be used to delineate large-scale partitions, such as

brain lobes and major sulci. In addition, they use a single subject atlas, which is not

capable of covering the inter-individual variability of brain structures.

(a) (b) (c)

Figure 1.8: The control mesh used in the B-spline surface registration[109]. (a)
Sample points are shown as the asterisks in one slice of a closed brain image. (b) and
(c) are the lateral and top view of B-spline control mesh.

The surface atlas plays a critical role in the surface parcellation. The word

“atlas” means a collection of maps. The human brain atlas provides a reference for

anatomical structures in the human brain. Since MR images can capture details

of anatomical structures inside of human brains, it is common to generate an atlas
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(a) (b)

Figure 1.9: The parcellated labels generated by the B-spline surface registration[109].
(a) A frontal view. (b) A lateral view.

from MRI scans of a group of subjects or from the MRI scan of a single subject to

study the structure of the cerebral cortex. Both of the approaches have strengths

and weaknesses. Sec. 1.3 has reviewed methods of the MR image-based brain atlas

generation. Van Essen gave a comprehensive review on generating surface-based

atlases for the visualization and analysis of the cerebral cortex[110].

Sandor and Leahy used a single subject as the atlas[109]. The MR image of

a male normal brain was chosen to be the atlas in their method. A smoothed brain

surface was generated for each subject, with major sulci on it. The atlas’ surface

was labeled using major sulci as borders. Then, the brain surface of the atlas was

treated like a deformable model which can warp onto a subject’s surface. The model

was represented by 3D B-Splines and an energy function was designed to help align

sulci on the atlas surface with the ones on the subject surface. After the atlas was

converged onto the subject’s surface, labels from the atlas can be propagated onto the

subject. The single subject atlas has the advantage of keeping sharp features, as well
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as anatomical details but it is biased by that particular subject’s folding pattern and

therefore lacks the inter-individual variability for the population study[88][111][110].

Van Essen published a population-average, landmark- and surface-based (PALS)

atlas which was generated on spheres[112]. The atlas was generated from structural

MRI scans of 12 healthy adults. Cortical surfaces of 24 hemispheres were generated

and mapped onto spheres. A set of six landmark contours were manually drawn on

each of the cortical surfaces. They were the calcarine sulcus, the central sulcus, the

Sylvian fissure, the anterior half of the superior temporal gyrus, the dorsal and ven-

tral parts of the medial wall boundary. An initial atlas was generated by directly

projecting and averaging landmark contours from 24 individual spheres on a regular

atlas sphere. The regular sphere on which the PALS atlas was generated consists

of 73,730 nodes. Then, individual cerebral cortex of the same group of people was

registered to the initial atlas by the landmark-based surface registration, so that all

24 cortical surfaces were aligned. Data files can be attached with the atlas nodes to

represent probabilistic priors of cortical shape and cortical geography. The atlas also

includes the deformation mapping which can be used to map further data information

from training subjects to the atlas.

FreeSurfer developed a surface atlas for the morphometric study of Alzheimer’s

disease (AD)[103]. It is a generalized atlas generated from 40 subjects with wide range

of age and clinical status. After cortical surfaces were generated from MRI scans of

training subjects, all surfaces were mapped onto spheres. The spherical surfaces were

aligned with each other by FreeSurfer’s multi-scale surface registration[99]. The align-
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ment was performed by choosing one subject as the target surface and registering the

rest of surfaces to the target surface. An atlas was thus generated on a sphere by av-

eraging scalar values representing fold patterns across 40 subjects. Then, the training

subjects were registered to the average atlas again and the scalar values on the atlas

were updated. The process continues until the atlas converged. All 40 subjects were

manually labeled into 34 regions on their surfaces[103]. The probabilistic information

about parcellation labels was also incorporated on the atlas. The Markov random

field in the first order anisotropic neighborhood was used to model the label and spa-

tial information[65]. The spherical atlas was composed of two icosahedra spheres in

different resolution level. The priors of label information are saved on a high resolu-

tion sphere with 163,842 vertices, while the curvature density at each vertex for each

label is saved on a low resolution sphere with 2,562 vertices.

Lyttelton et al. presented an iterative, hemisphere-unbiased atlas generation

based on the deformable surface registration[111]. The initial group average template

was generated by calculating the average value of a surface feature field across 111

training subjects, 222 hemispheres, so the surface feature field on the template was

coarse at the beginning. The template’s surface feature evolved after each level of

alignment. There are 5 hierarchy levels to finish the generation of the atlas from the

initial template. The number of polygons (triangles) are 320, 1280, 5120, 20480 and

81920. The same feature field was used to align 222 hemispheres in each level. After

each registration level, the surface feature of each training subject was warped onto

the original template and the surface feature of the template for the next registration
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level was generated by averaging the warped surface features from training subjects.

Lyttelton et al. also did a study about the iterative template stability verses the

number of training subjects. It shows that the template is stable at a training size of

30-50 subjects[111].

For the purpose of better understanding the structures and functions of the

human brain, we propose a comprehensive framework of the surface parcellation on

the human cerebral cortex, which includes:

• An automated pipeline for the surface generation on the boundary of the white

matter and the gray matter based on the T1- and T2- weighted MR images.

• An automated pipeline to generate a probabilistic atlas from a group of subjects

using the surface registration in a spherical domain.

• A complete solution to automatically parcellate the cerebral cortex based on

the subject’s MR images.

The goal of our study is to provide a fast, precise, and reproducible scheme

for cortical surface generation and parcellation using MR images, and the ultimate

goal of this study is to use this scheme to help us understand better how various

psychiatric and neurological disorders affect the cerebral cortex.
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CHAPTER 2
METHODS

This chapter presents the details of each step in the parcellation framework. It

starts from the preprocessing of the T1- and T2- weighted images (see Sec. 2.2). Next,

it explains how to generate the topology corrected cortical surface on the boundary

of the white matter and the gray matter (see Sec. 2.3). Then, it describes what types

of geometry features we calculated from the surface (see Sec. 2.4) and how to perform

the surface registration (see Sec. 2.6). Sec. 2.7 describes how to propagate the labels

from a single subject atlas to the subject surface. The last two sections of the chapter,

Sec. 2.8 and Sec. 2.9 describe details about the surface parcellation using an atlas.

2.1 Data Acquisition

49 subjects were enrolled voluntarily into an MR imaging protocol with written

consent obtained in accordance with the institutional review board at the University

of Iowa. The MR protocol acquired three image sets: a T1- and T2- weighted scan.

The images were obtained on a GE Signa 1.5 T MR scanner. The T1- weighted scan

was acquired using a 3D spoiled recalled gradient echo sequence with the following

scan parameters: TE = 5 ms, TR = 24 ms, flip angle = 40◦, NEX = 2, FOV = 26

x 19.2 x 18.6 cm, matrix = 256 x 256 x 192 . The T2- weighted scans were acquired

using a fast spin-echo sequence with the following parameters: TE = 28/96 ms for

the T2 image, TR = 3000 ms, slice thickness/gap = 3.0 to 4.0 mm / 0.0 mm, NEX

= 1, FOV = 26 cm, matrix = 256 x 192, ETL = 8.
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2.2 Preprocessing

This step is to take the T1- and T2- weighted images from the MRI scan

of one subject and to produce the tissue classified image for that subject. The tis-

sue classified image is a parametric image which combines the original T1- and T2-

weighted images and encodes the white matter, the gray matter and the CSF with

certain ranges of intensity values in a standard coordinate system. The AutoWorkup

in BRAINS (Brain Research: Analysis of Images, Networks, and Systems[77][113])

image analysis software is used to do the preprocessing[114]. The flowchart of the

preprocessing is shown in Fig. 2.1 and the details are given below.

The first step of the preprocessing is the “AC-PC alignment”. Anatomical

landmarks such as the anterior commissure (AC) point and posterior commissure

(PC) point are detected by an automated landmark constellation detection program

in BRAINS[115]. The program is able to detect the AC point and the PC point in

T1-weighted image and output the AC-PC aligned image, the transformation matrix

from the input image space to the output image space, and the landmark files in both

image spaces.

The second step is the “Multi-modal registration”. The AC-PC aligned T1-

and T2- weighted images are co-registered together using a rigid body registration

based on the mutual information[116][117].

Then, “Brain segmentation and bias field correction” is implemented to seg-

ment the brain using a brain mask generated for each subject. The brain segmentation

is performed on the co-registered T1- and T2- weighted images, and intensity inho-
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T1-Weighted MRI

AC-PC Alignment

Multi-modal RegistrationT2-Weighted MRI

Brain Segmentation and Bias Field CorrectionBrain Atlas

Intensity Normalization

Tissue Classification

Continuous Tissue Classified Image

Figure 2.1: The flowchart of the preprocessing for the T1- and T2- weighted images
in BRAINS AutoWorkup[114]. It is assumed that an atlas that represents anatomical
structures in human brain is provided.

mogeneities caused by variations in coil sensitivity and B1 uniformity are corrected

simultaneously in both modalities. Because of the inhomogeneity in images (it is

also called “bias field”), the same tissue could have different gray level across the

MR images. The brain segmentation based on image intensities fails to produce sat-

isfactory results with the existence of bias field effects in the image. At the same

time it is hard to remove the bias field artifacts without knowing the tissue types.

Therefore, we choose the Expectation Maximization Mean Field Approximation Lo-

cal Prior (EM-MF-LP) algorithm proposed by Pohl, et al.[118]. The EM-MF-LP

method does the brain segmentation and inhomogeneity correction iteratively. First,
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a synthesized average template of human brain[119] is registered to the subject us-

ing a B-Spline registration. Then, the probability maps of the brain tissues (gray

matter, white matter, and CSF) for the atlas are warped to the subject using the

transformation calculated by the registration. Following probability map warping, an

EM-MF loop is repeated iteratively to segment brain tissues for the subject and to

normalize the input T1- and T2- weighted images simultaneously until it converges.

The EM-MF algorithm consists of two steps: the Expectation-Step (E-Step) and the

Maximization-Step (M-Step). The E-Step calculates the weight for each voxel as the

likelihood of tissue classes and the M-Step estimates the bias field. A brain mask is

generated for the subject by combining the segmented tissue classes of the gray mat-

ter, the white matter, and the CSF. Morphological operations are used to generate a

closed brain mask.

The intensities in images of all modalities are rescaled to 0 to 255 after the

removal of extreme intensities which are in the top and bottom 0.05% of the histogram

(this is called as the “Intensity normalization” in Fig. 2.1). Fig. 2.2a shows the

outline of the resulting brain mask from “Brain segmentation and bias field correction”

superimposed on the intensity normalized T1 image of the same subject after the

“Intensity normalization”.

The normalized T1- and T2- weighted images are then input to a discriminant

tissue classification to create a continuous classified image to represent the white

matter, the gray matter, and the CSF[120]. The training samples or plugs (these two

terminologies are used interchangeably in this proposal) are chosen randomly from
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(a) (b)

Figure 2.2: The brain mask and a tissue classified image. (a) An axial slice of the
outline (in purple) of a brain mask generated by the EM-MF-LP algorithm superim-
posed on the T1 image. (b) An axial slice of the tissue classified image with continuous
intensities for different types of brain tissues.

the estimated brain region of interest based on the T1- and T2- weighted images. The

brain region is defined by the brain mask created in the “Brain segmentation and bias

field correction” step. Each plug is a small block of voxels comprising 2 × 2 × 2mm

region. To ensure the “purity” of the training plugs, only those plugs with intensity

variances below a certain threshold are accepted. A variance threshold is set for

T1 and T2 respectively at the beginning of the tissue classification based on the

experienced estimation. After the variance thresholding, “Plug picking” is performed

iteratively with 4000 plugs picked K-means clustering is used to assign each plug into

one of the three tissue classes (white matter, gray matter, or CSF). Iterations keep

going until two conditions are satisfied: One is that the minimum number of plugs

assigned to each class exceed the designated parameters: 2000 white matter plugs,

4000 gray matter plugs, and 200 CSF plugs; The other condition is that the designated



www.manaraa.com

38

minimum spatial coverage of the brain region for each class is at or above the following

parameters: 85% of the extent in each direction. After the “plug picking” is done, the

blood plugs are picked in a region within 5mm of the border of the brain mask. The

plugs that have mean intensities in between 60% to 80% of the gray matter mean in

T1 image and lower than 20% of the gray matter mean in T2 image are selected as

blood samples. A fuzzy classification is used to generate a continuous tissue classified

image as a result. Unlike discrete classified image, continuous classified image takes

account of partial volume effects. The intensity of the resulting image represents

the likelihood of the tissue belonging to a particular tissue class (Fig. 2.2b). For

example, the intensity of 10 in our tissue classified image represents the CSF, 130

for gray matter, and 250 for white matter. Likewise, the voxel with the intensity of

190 means it is 50% likely to be the white matter and 50% to be the gray matter.

Blood is represented by an intensity of 1 and other tissues are represented by 0 in the

resulting image.

2.3 Surface Generation

Topologically correct cortical surfaces of the left and right hemispheres can

be generated from the tissue classified image using BRAINS AutoWorkup[114]. The

flowchart of the surface generation is shown in Fig. 2.3.

First, the normalized T1 image generated from the “Intensity normalization”

is clipped using the brain mask generated from the “Brain segmentation and bias field

correction” (Fig. 2.1). The T1 clipped image is displayed as “T1 clipped” in Fig. 2.4
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for a hypothetical subject. Then, the skull-stripped (clipped) T1 image of the brain

atlas[119] (shown as “Atlas clipped” in Fig. 2.4) is registered to the “T1 clipped”

image of the subject using a diffeomorphic demons registration[121] initiated by an

affine registration. The brain masks of the left and right hemispheres, ventricles, and

the cerebellum are warped from the atlas to the subject using the deformation field

generated by the registration.

Atlas-to-Subject Registration and Warping

Filling up Ventricles and Subcortical Regions

Hemisphere Segmentation

Image Smoothing

Image Binarizing

Topology Correction

Surface Generation

Surface Decimation

Surface Smoothing

Figure 2.3: The flowchart of the surface generation based on tissue classified image.
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After the atlas-to-subject registration and warping, the ventricles and subcor-

tical structures such as the caudate, putamen, and thalamus are filled up using an

intensity value of 250 in the tissue classified image (“Filling up ventricles and subcor-

tical regions” in Fig. 2.3). The ventricle masks for each subject are generated using

atlas-to-subject warping methods mentioned above to warp the ventricles atlas esti-

mated with the Talairach atlas for each subject. An artificial neural network based

algorithm is used to define the subcortical regions (caudate, putamen, and thalamus)

for each subject[122]. Fig. 2.5a shows the label map of ventricles and subcortical

regions overlapped on the tissue classified image of the same subject.

Figure 2.4: The process of the brain structure segmentation based on the image
registration.
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The left and right hemisphere are separated using the whole brain mask gen-

erated by the “Brain segmentation and bias field correction” step in Fig. 2.1 and

the left/right hemisphere mask generated from the “Atlas-to-subject registration and

warping” step in Fig. 2.3. Apply the whole brain mask and a mask of one hemi-

sphere to the filled tissue classified image together, so that the cortical surface of each

hemisphere can be generated independently (“Hemisphere segmentation” as shown in

Fig. 2.3). Fig. 2.5b shows an example of the resulting left hemisphere of this step. In

the meanwhile, the cerebellum is excluded from all of the segmented hemispheres using

the warped mask of cerebellum. There are three steps that have been taken in order

(a) (b) (c) (d)

Figure 2.5: An example of applying image smoothing filters before surface generation.
(a) The axial view of the label map of regions that need to be filled up overlapped
on the tissue classified image. (b) The extracted tissue classified image of the left
hemisphere with filled ventricles and subcortical regions. (c) The resulting image of
a median filter on (b) with a radius of 1 voxel. (d) The resulting image of anisotropic
diffusion filter on (c) with t = 0.1 in Eq.2.1 and k = 1.0 in Eq.2.4.

to get a smooth cortical surface. Two of them are applied to the grayscale image and
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one is applied to the surface. The first step is the median image smoothing filter. The

median filter is a non-linear image filter which is used to remove “impulse noise”[123].

Impulse noise is present in the tissue classified image because of the remaining skull

voxels, or the errors caused by tissue classification. The median filter replaces the

current voxel value by the median value in its neighborhood. It can remove the noise

while preserves the edges of the input image. Fig. 2.5c shows the results of this filter

on the image shown as Fig. 2.5b. Although the median filter preserves edges better

than other smoothing filters, it is unable to preserve the “real” edge of our cortical

surface. With edge preservation prioritized a second filter is applied to remove im-

age artifacts while maintaining image edges. This is accomplished by applying the

anisotropic diffusion filter, to further smooth the image while conserving image edges.

The anisotropic diffusion filter is also a non-linear image smoothing filter which was

derived from the multiscale description of image[124][125]. Traditionally, a Gaussian

smoothing on a 2D original image I0(x, y) can be obtained by:

I(x, y, t) = I0(x, y) ∗G(x, y; t) (2.1)

where I(x, y, t) is the derived image and G(x, y; t) is a Gaussian kernel with the scale-

space parameter t. Bigger t can be used to perform more smoothing on the image

and at the cost of increased image blurring. Eq. 2.1 can be viewed as the solution of

the heat equation[126]

∂I(x, y, t)

∂t
= ∆I = ∇ · ∇I(x, y, t) (2.2)

with the initial condition I(x, y, 0) = I0(x, y). ∆ is the Laplacian operator and ∇ is
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the gradient operator. The anisotropic diffusion filter introduces a conduction term

to consider the local structures of the image by applying different conduction term

values to pixels in the interior of a region and to pixels at boundaries. In order to

encourage smoothing within a region and not at the boundary, the conduction term

is limited by the gradient magnitude, as

∂I(x, y, t)

∂t
= ∇ · c(|∇I|)∇I (2.3)

In this study, c(|∇I|) is set to be a function that reduces the value of c when the

gradient magnitude is high:

c(|∇I|) = e−(
(‖∇I‖)
k

)2 (2.4)

where k is the conductance parameter, which controls the sensitivity of the filter to

process the edge. Fig. 2.5d shows the result of the anisotropic diffusion smoothing

when applied to the median filtered image in Fig. 2.5c.

As mentioned in Sec.2.2, the intensity of the continuous tissue classified image

represents the likelihood of the voxel being a specific tissue type, for example an

intensity of 130 represents pure gray matter and 250 represents white matter. An

isovalue of 190 is used to generate the cortical surface in this study, in order to locate

the surface at the interference between white matter (130) and gray matter (250). To

demonstrate the effects of smoothing filters applied on the volume voxels to surface

generation, cortical surfaces generated with isovalue of 190 that is not smoothed

(Fig. 2.6a), that is smoothed with the median filter (Fig. 2.6b), and that is smoothed

with the median filter followed by the anisotropic diffusion filter (Fig. 2.6c) are shown

in Fig. 2.6.
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(a) (b) (c)

Figure 2.6: The effects of image smoothing filters on the surface generation. All of
the figures are generated at the boundary of the white matter and the gray matter.

Although the median filter coupled with the anisotropic diffusion filter can

remove most of the noise in tissue classified image, a triangulated surface generated

directly from the smoothed image is not topologically correct (genus zero). The

remaining noise (after image smoothing), the partial volume artifacts, and the re-

maining image intensity inhomogeneities (after bias field correction) can still cause

holes or handles on the surface. The number of holes and handles on a triangulated

surface can be calculated as the number of genus (g in Eq. 2.5) which can be derived

from the Euler characteristic χ of the surface:

χ = V − E + F = 2− 2g , (2.5)

where V represents the number of vertices, E the number of edges and F the number

of faces on the surface. A cortical surface free from holes or handles is topologically

equivalent to a sphere. The Euler characteristic of such a surface is 2 or the genus

of it is 0. However, Eq. 2.5 can only be used to calculate the number of holes and

handles; it does not provide any information about the size or location of them.
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A tremendous amount of work has been dedicated to the automated topology

correction of brain segmented images but only few methods can generate the genus

zero surface in a fast and stable way. Three kinds of approaches have been tested in

our study. The following paragraphs give brief description of the basic theory behind

those three approaches and also analyze the strengths and weaknesses of them.

3D Image

Marching Cubes

Triangle Mesh with Handles

Handle Detection

Image Correction

Corrected 3D Image

Figure 2.7: The main steps of open topology. The flowchart is adapted from[127].

Open Topology is an open-source toolkit developed upon the Visualization

Toolkit (VTK)[128] for the brain isosurface correction[127]. The main steps of this

method are shown in Fig. 2.7. It detects defective locations on the triangulated surface

and determines if the defect is a hole or a handle. The correction is done either by

filling a hole or by cutting a handle in the volumetric image. The method is fast but

not robust. It is capable of finding the defected place on the surface but it has trouble

figuring out whether the defect is a hole or a handle. Fig. 2.8 shows an example of a

defection on the cortical surface. it is classified as a handle by open topology, while
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in reality it is a small hole (circled in blue). The potential miss-classification of open

topology could lead to unnecessary large modifications on the data. As shown in

Fig. 2.8, Open Topology tends to cut the big handle near the hole in blue, instead of

filling the hole.

Figure 2.8: The defects detected by open topology on one cortical surface (circled in
red).

Shattuck and Leahy[129] proposed an automated non-linear graph-based topol-

ogy correction method of 3D brain segmentations (binary image). Two weighted

graphs are built based on the binary image to represent the foreground and the back-

ground connectivities. The binary image is modified by flipping the foreground or

background voxels. The surface generated from the binary image using graph-base

topology correction will be a genus zero surface if both the foreground object and the

background object are wholly connected. There are three types of connectivity of one

voxel with its neighbors to define the foreground or background graph, 6-, 18-, and

26-connectivity.
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6-connectivity: two voxels share a face (see Fig. 2.9a).

18-connectivity: two voxels share a face or an edge (see Fig. 2.9b).

26-connectivity: two voxels share a face or an edge or a corner (see Fig. 2.9c).

(a) (b) (c)

Figure 2.9: Types of the connectivity of a voxel (shaded) with its neighbors.

In Shattuck and Leahy’s approach, the 6-connectivity and 18-connectivity are

used to analyze the foreground and background respectively. The topology correction

is implemented based on the conjecture that if the foreground and the background

graph both are trees (with no cycles), the object surface generated at the boundary

of the foreground and the background is genus zero. Han et al. improved Shattuch

and Leahy’s method using a morphology opening operation to build the graph[130].

However, both of the approaches are proposed to correct the binary image of white

matter segmentation, in which most of the defects can be corrected by modifying less

than 10 voxels. When we applied this approach to correct the topology of the inner

surface (at the boundary of the white matter and the gray matter), it became very
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slow and unable to remove all of the defects on the surface.

The third method that was tested in this study is the genus zero image filter.

It was shown to be a fast and efficient method to remove topological defects from the

surface. The genus zero image filter can be download from NeuroLib, the C++ library

for open and close source software projects developed by the Neuro Image Research

and Analysis Laboratories of the Department of Psychiatry at the University of North

Carolina. The genus zero image filter also analyzes the connectivity of the foreground

and background in the brain segmentation image but the correction is operated in

either the foreground or the background (not both). Users have to choose whether to

“cut loops” in foreground or “patch holes” in background before running the program

and it is recommended by the authors to make the decision based on which types of

defects is dominant on the input surface. Cortical surfaces generated at the interface

between white matter and gray matter usually exhibits more holes than handles

(Fig. 2.10). Therefore, we decided to “patch holes”, which means the correction is

operated in the background. The program takes 3D binary segmentation images as

input and produces the output image which has a wholly connected foreground with

6-connectivity and a wholly connected background with 18-connectivity.

The 3D image after “Image smoothing” in Fig. 2.3 is binarized first using the

isovalue representing the expected surface. The topology correction is then performed

on the 3D binary image. When it is to “patch holes”, the foreground object is ex-

tracted using the biggest connected component with 6-connectivity. Next, a distance

transform for each voxel in the image is calculated as the squared Euclidean distance

http://www.ia.unc.edu/dev/
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Figure 2.10: The holes found by the genus zero image filter (marked by the red
circles). The surface is viewed from the inferior to the superior of the cerebral cortex,
with holes located at the temporal lobe.

to the nearest object (foreground) voxel, so the distance values of object (foreground)

voxels are all zeros and the distance values of background voxels are nonzeros. The

topology correction is implemented in a region growing model in background starting

from the voxels that are furthest (longest distance) to the object (deepest in back-

ground) and the region in process marches in a fixed step toward the object iteratively.

In each iteration, the region in process includes all of the voxels which are no closer to

the object at a certain distance value(level). The squared Euclidean distance between

two voxels (x1, x2, x3) and (y1, y2, y3) is given by:

d(~x, ~y) = d(~y, ~x) = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 (2.6)

To be more precise, the voxel size (in mm) is accounted to calculate the exact distance

between these two voxels in Euclidean space:

d(~x, ~y) = d(~y, ~x) = d21(x1 − y1)2 + d22(x2 − y2)2 + d23(x3 − y3)2 (2.7)

where d1, d2, and d3 are the voxel size along the corresponding axis in the 3D Euclidean

space. The implementation of the distance transform can be decomposed into three
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1D transformation[131]. Specifically, in our case, the distance transform for each 3D

image is calculated along z axis first and then updated along y axis and x axis in

each slice.

(a) (b) (c) (d)

Figure 2.11: The ring that could exist in a 2D binary image. (a) A 2D binary image
with the ring in background. (b) The distance transform from the background to the
foreground. (c) The region growing (red) starts from the furthest region in background
calculated by distance transform. (d) The final result of the region growing which
left out the thinnest part of the ring to “patch the hole”.

Source: Kriegeskorte and Goebel’s paper[132].

At each distance level, the local connectivity (18-connectivity) is analyzed for

each background voxel that has not been visited before and the connected components

that have been created among visited voxels are combined optimally in the neighbor-

hood of the current voxel. The “hole” on the surface is localized as a closed ring

of background and cut at the thinnest part of the ring (Fig. 2.11), which minimizes

the number of voxels needed to correct the image. “Patching holes” can be done

by avoiding self-touching during the procedure of region growing in the background

and the “left out” voxels in the background are then flipped to be the foreground
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voxels. Self-touching (R, v) of region R growing at voxel v can be true if and only if

two among 18 neighbors of v are assigned to the same connected component but not

actually connected other than through v.

Table 2.1: The Result of the Genus Zero Image Filter Used in Our Study

Volume (No.) Initial Genus Final Genus Pct. of Changed Voxels(%)
1 8 0 2.68
2 1 0 0.10
3 3 0 0.45
4 7 0 0.29
5 6 0 0.10
6 3 0 0.18

The results of the topological correction for 6 example surfaces are shown in

Table 2.1. It shows the initial numbers of genus are all corrected to be zeros by the

genus zero image filter and the percentage of changed voxels to the initial volume.

As we can see, the amount of changes are pretty small. Apart from that, it takes

seconds to finish the correction for one surface. Compared with Shattuck and Leahy’s

approach which takes hours to finish one surface, this filter is very efficient.

After the topological correction, the genus zero surface can be generated using

marching cubes[133]. The surface is generated at the boundary of the foreground and

the background in the 3D binary image, which is located at the inner boundary of the

gray matter (gray-white transition, see Fig. 2.12). However, the surface generated by
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(a) (b)

Figure 2.12: The location of the cortical surface. (a) The topologically corrected
segmentation for the surface generation overlapped on a clipped tissue classified image
in an axial slice. (b) The outline of the segmentation in (a) overlapped with the same
axial slice.

marching cubes typically has too many triangles, which are far more than necessary

to represent the cerebral cortex but just to increase the processing time for subsequent

steps. Surface decimation algorithms can remove vertices, edges and triangles, while

retain the surface topology. The surface decimation is also called surface simplifica-

tion. Several surface decimation approaches have been proposed to cut the number

of elements (vertices, edges, or triangles) on a surface, which can be classified into 3

categories – vertex clustering, resampling, and incremental decimation.

The basic idea of vertex clustering is simple[134]. The bounding regions of

input surface is divided into cells with the diameter smaller than a given tolerance.

Each cell is represented by a vertex and any triangle that has 2 to 3 corners can be

removed and replaced by this vertex. The algorithm is fast and robust but it can easily

cause topology change for the input surface. Resampling is another commonly used

algorithm for surface decimation[135]. First, the input surface is represented by linear
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surface geometries in piecewise. Then, the linear geometry is resampled by vertices

that are less distributed. It is mostly used to build multi-resolution representations

for the original surface. This algorithm does not work on highly folded surfaces like

human cerebral cortex.

Incremental algorithms iteratively remove one vertex at a time. The vertex

to be removed is determined by local geometric optimality criteria specified by the

user. When one vertex is removed, all of the triangles that it belongs to are removed

with the vertex. The hole is patched using a local triangulation. The removal repeats

until a termination criterion is met. This algorithm can be implemented in different

ways according to what kind of criterion is chosen to remove the vertex. Different

examples of criterion variation in incremental algorithms include implementations

based on distance or angle criterion, like the one in VTK[136], or implementations

based on edge collapsing, etc. We have applied both of these implementations with

the details and the comparison of them given below.

The VTK implementation is composed of 3 steps:

1. Classify the local vertex

2. Evaluate the decimation criteria

3. Patch the hole

Each vertex is classified into one of five classes, as shown in Fig. 2.13. The

five classes are: simple, complex, boundary, interior, and corner vertex. The “simple”

vertex is the one that is surrounded by a complete cycle of triangles. The “complex”

vertex is the one that is surrounded by a complete cycle of triangles but it has at
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Figure 2.13: The types of surface vertices[136]. Feature edges are shown as thick
lines.

least one edge that is shared by more than two triangles. The “boundary” vertex

is the one that is surrounded by a semi-cycle of triangles so it has at least two

edges that belong to only one triangle. The “interior” vertex has exactly two feature

edges , and the “corner” vertex has more than two feature edges. A feature edge

is identified when the angle between the normals of two triangles is bigger than a

specific “feature angle”. Simple, interior, and corner vertices are similar with each

other, except that interior and corner vertices have feature edges. All kinds of vertices

except the complex and the corner vertices are candidates for removal in the process

of surface decimation. The complex and corner vertices are excluded because surfaces

generated by marching cubes do not contain any complex vertex and the removal of

corner vertices could cause unwanted change.

After each vertex is classified, it is decided to be removed or not according to

its type. For a “simple” vertex, the distance from the vertex to an average plane is

calculated (see Fig. 2.14a). If it is within a certain tolerance, the vertex is removed.

For a “boundary” vertex or interior vertex, the distance to an edge is used as a
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(a) (b) (c)

Figure 2.14: The distance calculation for the “simple”, “boundary”, and “interior”
vertices. d in (a) shows the distance from the “simple” vertex to an average plane.
(b) the distance from a “boundary” vertex (the round black point in the center) to an
edge and (c) the distance from an “interior” vertex to an edge. The thickened edges
are feature edges.

criterion. If the distance is smaller than a tolerance, the vertex is removed and

replaced by the edge (see Fig. 2.14b and Fig. 2.14c). As outlined above, the purpose

of the criteria here is to delete as many of vertices as possible while minimizing changes

made to the topology of the original surface. When a vertex is removed, all of the

triangles that share this vertex are removed. The hole created by vertex removal

is patched by re-triangulating the surface using split planes. During decimation,

the progressive meshes[137] are used in VTK implementation for transmission and

updating. The decimated surface resulting from the VTK approach is shown in

Fig. 2.15a. The problem of this approach is that it is very sensitive to the value

of “Feature Angle”, which is used to define the feature edge. An example of that

is shown in Fig. 2.15. When the “Feature Angle” is increased from 35◦ to 40◦, the

number of triangles on the resulting surface are reduced from 85, 192 to 32, 480. It is

difficult to control the result of the decimation.
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(a) (b)

Figure 2.15: The test of the surface decimation filter in VTK. The input surface is
the surface generated by marching cubes as shown in Fig. 2.17a. The parameters are
set to be the same for (a) and for (b) except that the “Feature Angle” is 35◦ in (a)
and 40◦ in (b). The number of triangles on the surface in (a) is 85,192 while it is
32,480 on the surface in (b).

(a) (b) (c)

Figure 2.16: The edge collapsing during decimation. (a) The initial configuration.
(b) The central edge is removed. (c) The result after relocating the remaining vertex
of the removed edge.

Another incremental surface decimation method was proposed by Gelas, et

al.[138]. It deals with surfaces represented by the quad edge mesh, a 2-manifold data

structure in ITK[139]. This method removes vertices on a surface by collapsing its

edges iteratively, as shown in Fig. 2.16. In each iteration, the shortest edge is collapsed
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(a) (b) (c)

Figure 2.17: The effects of decimation and smoothing on the cortical surface. (a)
The raw surface generated from marching cubes. There are 246,340 triangles and
123,172 vertices on it. (b) The decimated surface of (a) using the incremental surface
decimation based on edge collapsing. The remaining number of triangles is set to be
70,000 and the remaining number of vertices is 35,002 after the surface decimation.
(c) The result of surface smoothing on the decimated surface in (b). Laplacian-based
smoothing method is applied with 5 iterations and the relaxation factor (λ) to be 0.1.

and the triangle that is affected by the collapsing is updated. We think this method

is a better solution to decimate surfaces in our data because edges with the shortest

length are guaranteed to be removed first. Triangles with extremely short edges can

be problematic in the surface registration (please see details in Sec. 2.6) because

their vertices could cross each other to produce flipped triangles in the process of

deformation. In addition, this method has a handy feature that allows us to specify

the number of triangles to remain on the resulting surface without sacrificing the

topology of it. The resulting surface generated by the surface decimation is shown in

Fig. 2.17b.

The last step of the surface generation process is to remove the high frequency

noise from the surface and improve the appearance by applying smoothing or re-

laxation filters (“Surface smoothing” in Fig. 2.3). Surface smoothing filters adjust
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locations of vertices and make them more evenly distributed, so theoretically they do

not affect the geometry topology of the surface. The output surface should have the

same number of triangles, edges, and vertices with the input surface in this step.

The most common surface smoothing methods are based on Laplacian smooth-

ing. The simplest version of Laplacian smoothing is to move each vertex to the average

coordinate of its neighboring vertices. Neighboring vertices are those with which the

center vertex shares an edge. The vertex p and its neighboring vertices {q1, q2, ..., qn}

are shown in Fig. 2.18a. The calculation for updating the location of vertex p in each

iteration is given below. All vertices of the surface are updated in each iteration, so

more iterations will cause more smoothing on the surface.

(a) (b)

Figure 2.18: The Laplacian surface smoothing. (a) The neighbors of vertex p,
{q1, q2, ..., qn}. (b) A particular situation when vertex p moves out of the region
defined by q1 to qn.

The displacement of vertex p can be calculated using coordinates of its neigh-
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bors shown in Fig. 2.18a, {q1, q2, ..., qn}:

u(p) =
1

n

∑
i

qi − p (2.8)

where u(p) denotes the displacement of p; p and qi represent the current coordinates

of vertex p and its neighboring vertices qi; n is the number of neighbors for vertex p.

Then, the new location of p can be calculated as:

pnew ← pold + λu(pold) (2.9)

where 0 ≤ λ ≤ 1 is the relaxation factor. A bigger value of λ causes more aggressive

displacement for the vertex p. In extreme case as shown in Fig. 2.18b, aggressive

displacements could produce flipping triangles, so a smaller λ is recommended in

implementation to result a stable smoothing.

Eq. 2.8 and Eq. 2.9 are repeated iteratively until a certain criterion is reached.

Commonly, the stop criterion is set to be the number of iterations. More iterations

produce more averaging/smoothing on the surface, as shown in Fig. 2.19.

From Eq. 2.8 we can also see that the surface tends to shrink toward the

centroid when the number of iterations is getting bigger. To prevent shrinking the

surface, but to obtain a smooth surface, we recommend to use 5 iterations with a

slightly bigger relaxation factor: λ = 0.1, as shown in Fig. 2.17c. However, the

surface in Fig. 2.19b looks smoother and better than the surface in Fig. 2.17c. We

then calculated the shortest edge length of both surfaces. It is 0.19 mm on the surface

shown in Fig. 2.19b, and 0.32 mm on the surface shown in Fig. 2.17c. Since a very

short edge could potentially cause problems in the surface registration, we prefer to
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(a) (b) (c)

Figure 2.19: The results of the surface smoothing. The surface shown in Fig. 2.17b
is smoothed with 5 iterations (a), 100 iterations (b), and 500 iterations (c). λ equals
to 0.01 in all of the three cases.

use the small number of iterations with a slightly bigger relaxation factor.

2.4 Geometry Features

The cerebral cortex is a highly convoluted anatomical structure. The folding

pattern defined by sulci and gyri is a complex pattern that is heterogeneous across

subjects. The heterogeneity has made the automated labeling of this structure into

its constituent components a challenge in the field of neuroimaging. In our study,

surface registration based on diffeomorphic demons algorithm[108] is used to align two

cortical surfaces together. It is a scalar value based surface registration algorithm that

is similar to the intensity based image registration. It requires a scalar assignment

to each vertex of surfaces to be registered. We calculated four types of scalar values

based on intrinsic geometry features of the human cortical surface:

DistanceToPCIS: The Euclidean distance from the surface vertex to the PC point

in the inferior-to-superior direction
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DistanceToPCAP: The Euclidean distance from the surface vertex to the PC point

in the anterior-to-posterior direction

DistanceToHull: The Euclidean distance from the surface vertex to a convex hull

of it

MeanCurvature: The mean curvature at the surface vertex

Figure 2.20: The location of the posterior commissure. It is as median sagittal
section of the human brain. The “posterior commissure” is outlined in red.

Source: the book of “Henry Gray’s Anatomy of the Human Body”[140].

Both of “DistanceToPCIS” and “DistanceToPCAP” are based on the location

of the PC (posterior commissure) point. It is an anatomical marker, as shown in

Fig. 2.20, that can be identified automatically by the BRAINS constellation detec-

tor program[115]. “DistanceToPCIS/AP”, “DistanceToHull”, and “MeanCurvature”

represent the geometry features of a cortical surface from coarse to fine, which is
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consistent with the characteristic of multi-resolution registration framework, so it is

reasonable to feed those four types of geometry features into different level of resolu-

tion from coarse to fine to drive the surface registration.

(a) (b)

Figure 2.21: The “DistanctToPCIS/AP” on a cortical surface. The surface of the
left hemisphere is shown in a lateral view. The surface vertices are associated with
the signed distance values of “DistanceToPCIS (a) and “DistanceToPCAP” (b). The
scalar values are colored using the legends on the right.

“DistanceToPCIS” and “DistanceToPCAP” are both signed Euclidean dis-

tances. As shown in Fig. 2.21a, the most positive value of the “DistanceToPCIS”

helps us identify the superior pole of the cerebral cortex which often locates at the

most superior part of the central sulcus. The most negative value of the “Distance-

ToPCIS” helps us to identify the tip of the temporal lobe. Likewise, the most positive

and the most negative value of the “DistanceToPCAP” help us to identify the frontal

and occipital poles. “DistanceToPCAP” also helps us to identify the central sulcus,

since the PC point is close to the central sulcus in the anterior-posterior direction

(see Fig. 2.21b).



www.manaraa.com

63

The convex hull is generated by applying a 3D Delaunay triangulation to all

of the vertices on the surface and extracting the outmost surface of it. As shown

in Fig. 2.22a, the convex hull provides a shrink wrapping of the brain surface. By

calculating the Euclidean distance from the surface vertex to the hull, vertices on

major gyri have the values close to zero while deep sulci have larger values. The

deepest regions on the surface such as insula have the largest value.

(a) (b)

Figure 2.22: The “DistanceToHull” on a cortical surface. (a) The convex hull with
the cortical surface inside of it. (b) The surface associated with the scalar values of
“DistanceToHull”. The color legend is shown on the right of the cortical surface.

The last type of the geometry feature is the “MeanCurvature”. Curvature of

a curve is the amount by which it deviates from a straight line. The curvature of a

smooth curve is calculated as the reciprocal of its osculating circle at each point, as

shown in Fig. 2.23a.

k =
1

r
(2.10)
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where r is the radius of the osculating circle at point p as shown in Fig. 2.23a and k

is the curvature of the point. If the unit tangent vector at point p rotates counter-

clockwise, k > 0. If it rotates clockwise, k < 0.

(a)

(b)

Figure 2.23: The calculation of the curvature at a point. (a) The osculating circle
at point p on a curve C, where r is the radius of the circle. (b) The normal planes at
the principle curvatures (adapted from the Wikimedia Commons file “File:Minimal
surface curvature planes-en.svg”).

For a 2-manifold surface S embedded in R3, curvature measures the local

bending of the surface. As demonstrated in Fig. 2.23b, any plane containing the

http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
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normal vector at vertex p of the surface is called the normal plane. One normal

plane intersects the surface to form one plane curve, so different normal planes have

different plane curves on the surface and they all have different curvature at vertex p.

The principle curvatures at p, k1 and k2, are the maximum and minimum curvatures

among all of the plane curves. There are two kinds of calculations for curvatures of

surface vertices, Gaussian Curvature and Mean Curvature. Gaussian Curvature of

vertex p on a surface is the product of the principal curvatures, k1 and k2, K = k1k2,

so the Gaussian Curvature is positive for spheres, negative for one-sheet hyperboloids,

and zero for planes. The Mean Curvature of vertex p on a surface is the mean value

of the principle curvatures k1 and k2, H = (k1 + k2)/2.

The Gaussian Curvature determines whether a surface is locally a peak or a

valley (when K is positive) or locally saddle (when K is negative). It is an intrinsic

curvature which means the sign of it is independent of the embedding of the surface

and it is not affected by the choice of the unit normal of the surface. The Gaussian

Curvature for the vertices of our cortical surface is shown in Fig. 2.24a. As we can

see, Gaussian Curvature is shown to be positive both at the local peak and local

valley, so it cannot help in distinguishing the folding patterns (sulci and gyri) of the

cortical surface. On the other hand, the Mean Curvature is an extrinsic curvature

which means that its sign depends on the choice of the unit normal of the surface.

The mean curvature gives us a smoother and more meaningful curvature evaluation

in the sense of sulci and gyri patterns on the cortical surface, as shown in Fig. 2.24b.

Assuming the surface normal is pointing outwards, the folding structures bending
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along the direction of the normal vectors have positive Mean Curvatures (gyri), while

the folding structures bending away from the direction of the normal vectors have

negative Mean Curvatures (sulci).

(a)

(b) (c)

Figure 2.24: The curvatures on the cortical surface. (a) The cortical surface asso-
ciated with Gaussian Curvature of vertices. (b) The “Mean Curvature” associated
with the same cortical surface. (c) The smoothed “Mean Curvature” values on (b).
All of the curvature values are rescaled to [-0.01,0.01] and the color legend is shown
on the right side of the surface in (a).

The original “Mean Curvature” on the cortical surface shown in Fig. 2.24b

is noisy. A simple scalar value smoothing method was proposed by Yeo, et al. in
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his surface registration paper[141]. It was implemented with ITK by Ibanez[142].

The method smooths the scalar value at each vertex (central vertex) on the surface

iteratively. A new scalar value is calculated by averaging the scalar value at the central

vertex and its neighborhood. Different weights are assigned to the scalar value of the

central vertex and to scalar values of its neighboring vertices, though neighboring

vertices share the same weight. The weight for the central vertex is calculated using

Eq. 2.11, and the neighboring vertices are weighed by the value calculated using

Eq. 2.12.

ω0
i =

1

1 + |Ni| exp
(
− 1

2λ

) (2.11)

ωni =
exp

(
− 1

2λ

)
1 + |Ni| exp

(
− 1

2λ

) (2.12)

where ω0
i is the weight for the center vertex; ωni is the weight for its neighboring ver-

tices; λ is a constant parameter that applies to the entire surface; Ni is the number

of neighboring vertices of the ith vertex. Table 2.2 shows the weights of the central

vertex and of its neighboring vertices with different values of λ. For a better illus-

tration, Table 2.2 values are plotted in Fig. 2.25 when the λ changes its value along

the x axis. As demonstrated from Table 2.2 and Fig. 2.25, the weight of the central

vertex plays a dominant role when λ ≤ 1.0 (subtle smoothing) and it is slowly get-

ting close to the weights of its neighbors when λ becomes bigger (strong smoothing).

The number of iterations is another parameter to control the strength of smoothness

that is expected on the input surface scalars. More iterations causes more smoothing

on surface scalars. The result of the smoothing on the Mean Curvature shown in

Fig. 2.24b is shown in Fig. 2.24c with λ = 1.0 and 5 iterations.
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Table 2.2: The Weights of the Central Vertex and Its Neighborhood

λ Neighbor Weight Central Weight
0.03125 0.00000 1.00000
0.06250 0.00033 0.99799
0.12500 0.01650 0.90099
0.25000 0.07469 0.55187
0.50000 0.11470 0.31179
1.00000 0.13074 0.21556
2.00000 0.13729 0.17628
4.00000 0.14019 0.15886
8.00000 0.14155 0.15068

Source: Ibanez’s publication[142].

Figure 2.25: The plot of the smoothing weights, as shown in Table 2.2. The neighbor
weights in the second column of Table 2.2 is plotted as the blue line and the central
weights in the third column is plotted as the red line.

In summary, we calculated four types of geometry features on the cortical

surface as shown together in Fig. 2.26. The cortical surface is generated from one

hemisphere of a human brain. These features represent geometry characteristics of

the cortical surface from coarse to fine levels. The first two, “DistanceToPCIS”
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(a) DistanceToPCIS (b) DistanceToPCAP

(c) DistanceToHull (d) MeanCurvature

Figure 2.26: The geometry features calculated on the cortical surface. The scalar
values of the geometry features are colored with the legend on the right of each surface.

and “DistanceToPCAP”, contain more global information in showing polar points

of the surface with extreme values, while “MeanCurvature” focuses more on local

convexities, and “DistanceToHull” helps to identify overall deep fissures of the cortical

surface. We did a study about the effectiveness of using these geometry features in

surface registration[143], which led to the conclusion that since the geometry features

have the properties of representing cortical surfaces from coarse to fine in the order of

“DistanceToPCIS/AP”, “DistanceToHull”, and “Mean Curvature”, if we apply them

to the corresponding resolution levels of the multi-resolution registration, we can get

better results of surface parcellation (please also see the detail in reference[143]).
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2.5 Surface Flattening

Surface flattening is the concept we use to map vertices, edges, and triangles

from the highly folded original cortical surface to a parametric surface, such as a

complex plane or a sphere. With this technique, it is possible to register two cor-

tical surfaces together by transforming one surface to the other in their parametric

representations. Then, the labels from one surface can be propagated onto the other

surface using the transformation calculated by the surface registration. For the sake of

surface parcellation, the surface flattening is required to be bijective (one-to-one cor-

respondence), so that the propagated labels on the parametric surface can be mapped

back onto the original cortical surface. Another purpose of the surface flattening is to

have an alternative option to visualize the brain surface, since all of the information

hidden in the sulci will be exposed to the surface after it is flattened.

According to Eq. 2.5, the Euler characteristic of the genus zero cortical surface

is 2, which is the same as the Euler characteristic of the spherical polyhedron. We

can say that the triangulated genus zero cortical surface has the same topology as a

triangulated sphere. For two surfaces with the same topology, there exists a bijective

(onto and one-to-one) mapping between them[144]. We would like to use that prop-

erty of the genus zero cortical surfaces generated in Sec. 2.3 to parameterize them

with spherical coordinates so that the surface registration can be performed in the

spherical domain.

Independent of the method applied, mapping a highly folded surface like the

surface of a human cerebral cortex cortical onto a (unit) sphere always introduces
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distortions at either angles of triangles or areas of them. We have tried two different

approaches to flatten the genus zero cortical surface generated in our study (please

see Sec. 2.3 for details). Both of the approaches try to minimize the distortion in

different ways and try to guarantee that triangles do not flip in the process of surface

flattening.

One of the approaches is based on the Laplace-Beltrami operator[145][146].

It is claimed to be bijective and conformal. A conformal map can preserve angles

and shapes of triangles on the surface, but not necessarily the size (area) of them.

The algorithm derives from differential geometry. According to the theory, a regular

surface in R3 can be obtained by taking pieces of a plane and deforming them until

smooth[147]. If Σ ⊂ R3 represents the cortical surface to be flattened, it is assumed

that Σ is a smooth manifold. A surface in R3 can be represented by a function, for

example, the function using Euclidean coordinates (x, y, z) as f(x, y, z). Mathemat-

ically, the surface is considered to be smooth (differential) if it has derivatives of all

orders at all points. Assume p is a fixed point on the surface to be flattened, and it

is supposed to be mapped to the polar point of the resulting sphere. Let S2 denote

the unit sphere in R3 and C be the complex plane. The conformal mapping z can be

written as z : Σ \ {p} → S2 \ {north pole}, where “\” means “with”.

However, the Laplace-Beltrami operator based surface flattening method has

some critical problems. First, the mapping is highly dependent on the selection of the

polar point (cell). Angenent et al. recommend selecting the polar point (cell) from a

flat area on the original surface[145]. In that case either we need an extra program to
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search for the flat area on the surface or it will not be fully automated. Furthermore,

a tiny shift of the location of polar cell can produce a completely different mapping

onto the sphere. For example, Fig. 2.27b and Fig. 2.27c are spheres mapped from

the same surface using two polar cells that are next to each other on the original

surface. Second, big distortions (long and thin triangles) are found in the area close

to the south polar of the resulting sphere. This may result in poor registration within

this region resulting from highly variable geometric features being placed within a

relatively small area on the sphere, as the triangle shown in Fig. 2.28.

(a) (b) (c)

Figure 2.27: The effects of choosing the polar cell in the Laplace-Beltrami Operator
Based Surface Flattening. (a) Two polar cells are outlined in purple and the numbers
in green denote the cell IDs of them. (b) The resulting sphere using cell 0 as the
polar cell. (c) The resulting sphere using cell 4639 as the polar cell. All of the other
parameters are the same for both of the results, and the screen shots of them were
taken from the same angle.

Gelas and Gouaillard[148] proposed a more general framework of the surface

parameterization based on the data structure of a quad edge mesh in ITK[139]. Unlike



www.manaraa.com

73

(a) (b)

Figure 2.28: The distortion caused by the Laplace-Beltrami operator based surface
flattening. (a) shows the location of cell 4668 on the input surface. It locates at the
anterior part of the left hemisphere while the polar cell in this case is chosen at the
posterior part of the same hemisphere. (b) shows the location of the cell 4668 on the
resulting sphere. The triangle is so tiny (almost missing) because of the distortion of
the surface flattening.

the Laplace-Beltrami operator based method which is derived from the assumption

of a continuous function but uses the finite-element approximation to apply it on

the discrete surface, the surface parameterization is proposed intrinsically for discrete

surfaces. It calculates a bijective mapping between two topologically equivalent sur-

faces using the linear parameterization with fixed boundaries. The input surface is

not limited to be genus zero. It can be a single connected surface of any genus. The

flowchart of using this method to flatten a genus zero surfaces is shown in Fig. 2.29.

To deal with a surface without any boundary, a dual Fast Marching method

is used first to split the original genus zero surface into two “half” surfaces with a

shared boundary, as shown in Fig. 2.30. The Fast Marching method (FMM) is similar

to Dijkstra’s method, which is well known for finding the shortest path in a network.
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Genus Zero Cortical Surface

Surface Splitting

Surface Part I Surface Part II

Boundary Smoothing Boundary Smoothing

Border TransformMap To Disk I Map To Disk II

Map To Sphere I Map To Sphere IIUnit Sphere

Figure 2.29: The flowchart of surface flattening. The steps of surface flattening using
the linear parameterization with fixed boundaries to deal with genus zero surfaces
without boundaries.

The implementation of FMM on surface splitting is to build up two clusters. Each

cluster is used to keep “half” of the surface (see Fig. 2.30). The FMM goes through the

original surface to classify cells of it into two clusters. The classification is based on

the distance between the cell to the seed cell of the cluster. The cell is classified to one

cluster if its seed cell has a shorter distance to the cell than the seed cell of the other

cluster. In our study, the seed cells are chosen using the bounding box of the surface

(see Fig. 2.31). In order to make them locate at similar positions among different

subjects, we decided to use the cells that have points with extreme (maximum and

minimum) coordinates along the “Y” axis (the anterior-posterior direction, as shown
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in Fig. 2.31). Once two seed cells have been chosen, a dual FMM starts to march from

them simultaneously. The distance from a cell on the surface to either of the seed is

computed as the arrival time in the algorithm of FMM[149]. The minimal priority

queue is used to save the shortest distance to make sure that the cell with the shortest

distance on the “front” is processed (classified into one of the two clusters) first, so

that an “unprocessed” cell will always be recruited into the cluster that is closer to

it. As the result, all of the cells on the original surface are assigned to one of the

clusters, so the whole surface is split into two “half” surfaces with a shared boundary

(Fig. 2.30).

(a) (b) (c)

Figure 2.30: The splitting of the genus zero cortical surface. The original surface
shown in (a) can be split to two parts as shown in (b) and (c). After the splitting, both
parts of the original surface share a common boundary so that the original surface
equals to the sum of them.

The boundaries of two “half” surfaces are composed of edges of triangles on the

border. To minimize distortions on the flattened surface, the boundaries need to be
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Figure 2.31: The bounding box of the surface to be flattened.

(a) (b) (c)

Figure 2.32: The boundary smoothing after the surface splitting. (a) shows a part
of the boundary of one of the “half” surfaces with sharp shapes in red. (b) gives a
closer look at some region on the boundary in (a) and (c) shows the same region after
the boundary smoothing.

smoothed to remove the saw-tooth pattern on the boundary (“Boundary Smoothing”

in Fig. 2.29). The smoothing process searches for any triangle that has two of its

edges exposed at the boundary (as shown in Fig. 2.32a. If that kind of triangle is

found, it flips the triangle to the other side of the boundary to join the other “half”

of the surface. The process is performed iteratively until no such triangles can be
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flipped. The result of smoothing the boundary in Fig. 2.32b is shown in Fig. 2.32c.

The linear parameterization with fixed boundaries can be seen as a spring and

mass model in which each vertex of the surface is a mass and each edge of the triangles

is a spring[148]. If the boundary of this triangulated surface is fixed, the interior of

this spring network will relax energetically, then the parameterization of the surface

can be computed by minimizing the overall spring potential energy:

E =
1

2

N∑
i=1

∑
j∈Ni

1

2
Dij ‖ui − uj‖2 (2.13)

where each edge of the triangle is assumed to be an ideal spring, i.e. the rest length

is zero and the potential energy is 1
2
Dl2, in which D is the spring constant and l

is the length of the spring. ui = (ui, vi)i=1,...,N is the desired parameter points for

vertices and N is the number of vertices on the surface with a fixed boundary. Ni

is the neighborhood of the vertex pi, and Dij = Dji is the spring constant for the

edge connecting vertex pi with pj.
1
2

appears at the beginning of Eq. 2.13 because

the energy of each edge would have been counted twice without it.

To minimize E in Eq. 2.13 with a fixed boundary, we can do a partial derivative

of E with respect to ui:

∂E

∂ui
=
∑
j∈Ni

Dij (ui − uj) (2.14)

and then look for a ui which makes ∂E
∂ui

= 0. We have the parameter point ui for each

interior vertex pi, defined by its neighbors

ui =
∑
j∈Ni

λijuj (2.15)
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with the coefficients

λij = Dij/
∑
j∈Ni

Dik (2.16)

The boundary vertices are not calculated using Eq. 2.15. Boundary vertices are

mapped onto a circle in the parametric space, so the parameter coordinates of the

boundary vertices are known and the calculation of parameter points for interior

vertex ui can be separated using interior vertices and boundary vertices in its neigh-

borhood. Eq. 2.15 can be rewritten as:

ui =
∑

j∈N ,j≤n

λijuj +
∑

j∈N ,j>n

λijuj (2.17)

where it is assumed that there are M vertices in pi’s neighborhood and that pj is an

interior vertex when j = 1, ..., n and is a boundary vertex when j = n+ 1, ...,M .

We can see that calculation of the parameter point ui = (ui, vi) can be obtained

by solving the linear systems

A · U = Ū and A · V = V̄ (2.18)

where U = (u1, ..., un) and V = (v1, ..., vn) are the column vectors of unknown pa-

rameter coordinates for interior vertices; Ū = (ū1, ..., ūn) and V̄ = (v̄1, ..., v̄n) are the

column vectors with coefficients

ūi =
∑

j∈Ni,j>n

λijuj and v̄i =
∑

j∈Ni,j>n

λijvj (2.19)

And A = (aij)i,j=1,...,n is the sparse n× n matrix with elements

aij =


1 if i = j,
−λij if j ∈ Ni,

0 otherwise.
(2.20)
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There are multiple ways to set the value of spring constant Dij between vertex

pi and its neighbor pj[148], but for our study, we just chose them to be 1.0. Further,

we know that if all weights (λij) are positive and the parameter points of the boundary

vertices form a convex shape, no triangles will overlap with each other after the surface

parameterization, which means the mapping will be bijective[150].

(a) (b)

Figure 2.33: The geometries of the border transform. (a) the 2D coordinates of
points on a unit circle, ui and vi can be calculated using the polar angle α and radius
as 1.0. (b) the relationship of a chord crdθ and its angle θ in a circle with radius r.
The calculation is given in Eq. 2.22.

As mentioned above, the boundary vertices need to be projected onto a circle

before interior vertices are mapped, such that the right sides of linear systems in

Eq. 2.18 can be determined. Because “half” surfaces shown in Fig. 2.30 share the

same boundary, we only need to project the boundary once. This is the “Border

Transform” step in Fig. 2.29. “Border Transform” is a method to distribute boundary
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vertices around a unit circle. As shown in Fig. 2.33, the 2D coordinates of any point

on a unit circle can be calculated using the polar angle α:

ui = cosα
vi = sinα

(2.21)

Projecting boundary vertices onto a unit circle (radius = 1.0) can be performed

by placing each of them onto the circle using the calculated polar angle α. First, we

mapped all of the edges on the boundary one by one along a big circle, as shown

in Fig. 2.34a. The circle needs to be big enough to contain all of the boundary

edges as its chords without overlapping. Assume the radius of the big circle is r,

which is calculated as 1.5 times the maximum distance from boundary vertices to

the mass center of the surface that has the boundary. Each chord of the big circle

has a corresponding polar angle θ calculated by Eq. 2.22, when θ is not bigger than

π
2
. Then, each edge i is projected onto a unit circle while the ratio of its polar angle

θi to the sum of
M∑

i=n+1

θi remains the same as
M∑

i=n+1

θi is projected to 2π in the unit

circle, allowing the mapped polar angle of each boundary vertex pi, i = n + 1, ...,M

on the unit circle to be calculated using Eq. 2.23. The resulting parameter points on

the unit circle are illustrated in Fig. 2.34b.

crdθ = 2

√
1− cosθ

2
(2.22)

αi =
i∑

k=n+1

θk · 2π/
M∑

k=n+1

θk (2.23)

where αi is the polar angle for vertex pi on the mapped boundary (unit circle). θk is

the polar angle of vertex pi’s edge in the big circle with radius r.
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(a) (b)

Figure 2.34: The mapping of the boundary vertices and edges. pM is the last vertex
of the boundary. It shows up twice here because the boundary is supposed to be a
closed curve. θk is calculated using the angle and chord relationship given by Eq. 2.22.

(a) (b)

Figure 2.35: Parameterization of “half” surfaces into unit disks. (a) Unit disk mapped
from the “half” surface in Fig. 2.30b. (b) Unit disk mapped from the “half” surface
in Fig. 2.30c. Both of the disks share the same unit circle mapped from the boundary
generated from the “Surface Splitting”.

The boundary mapping method mentioned above makes sure that there is no

overlapping between edges and points on the boundary after they are mapped onto the

unit circle. Once the new coordinates of all of the boundary vertices are known, the
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surface with the boundary can be mapped into the plane of the unit disk by solving

the linear systems in Eq. 2.18. Half surfaces shown in Fig. 2.30b and Fig. 2.30c are

both mapped onto an unit disk shown as Fig. 2.35a and Fig. 2.35b. Then, inverse

stereographic projection is used to project each disk onto a hemisphere, as shown in

Fig. 2.36a and Fig. 2.36b respectively. The formula of inverse stereographic projection

for each of the disk is given as:

(x, y, z) = (r · 2u

1 + u2 + v2
, r · 2v

1 + u2 + v2
, r · −1 + u2 + v2

1 + u2 + v2
) (2.24)

(x, y, z) = (r · 2u

1 + u2 + v2
, r · 2v

1 + u2 + v2
, r · 1− u2 − v2

1 + u2 + v2
) (2.25)

where (u, v) is the 2D Cartesian coordinates of the point on the unit disk and r is the

radius of the resulting sphere. (x, y, z) is the 3D Cartesian coordinates of the points

after mapping. It is easy to prove that x2 + y2 + z2 = r2, verifying that all of the

points are on a sphere with radius r. Eq. 2.24 is used to map any point (u, v) within

the unit circle (−1 ≤ u ≤ 1, −1 ≤ v ≤ 1) onto a hemisphere with −r ≤ z ≤ 0, while

Eq. 2.25 is used to map (u, v) onto a hemisphere with 0 ≤ z ≤ r. Connecting both

of the hemispheres together, we can get the surface parameterization of the original

input genus zero surface (see Fig. 2.36c).

The result of mapping the same surface shown in Fig. 2.28a using the sur-

face parameterization described above is shown in Fig. 2.37. The cortical surface is

mapped onto a unit sphere shown in Fig. 2.37b. No flipping triangle is found on the

resulting sphere and the procedure is fully automated with the seed cells being chosen

automatically. Unlike the polar cell selection in the Laplace-Beltrami based method,

the seed cell does not need to be chosen from a flat area. Since this method only maps
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(a) (b) (c)

Figure 2.36: The final result of surface parameterization by connecting two hemi-
spheres together. (a) The hemisphere mapped from the unit disk in Fig. 2.35a. (b)
The hemisphere mapped from the unit disk in Fig. 2.35b. (c) The final result by
simply putting (a) and (b) together.

half a hemisphere, large distortions have been avoided. However, certain amount of

distortions are still unavoidable in the surface parameterization. The largest distor-

tion in surface parameterization has been found on the cutting boundary. Boundary

smoothing helps to reduce the distortion but cannot completely remove it. The re-

sulting spheres with and without boundary smoothing are given in Fig. 2.38 just for

visual comparison.

In summary, the surface parameterization method provides a better mapping

from surface onto the sphere for the following reasons:

1. It does not need the user to specify the north polar cell. The user still needs

to decide how to split the surface but the final result would not be affected too

much as long as the seed cells in this method stays at the ends of the same axis

2. It is guaranteed that there is no flipped triangle during the flattening

3. There are less “missing” triangles (distortion shown in Fig. 2.28) caused by the
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(a) (b)

Figure 2.37: The result of surface parameterization of the genus zero surface. (a)
The input surface. (b) The resulting sphere. The color associated on both of them
are coded by the mean curvature.

(a) (b)

Figure 2.38: The effects of the boundary smoothing on the final mapped sphere. (a)
The resulting sphere without the boundary smoothing. (b) The resulting sphere with
the boundary smoothing.

surface parameterization than those caused by the Laplace-Beltrami operator

based method

4. There are less amount of distortion caused by the surface parameterization

method than by the the Laplace-Beltrami operator based method

However, the geometry distortion is unavoidable. It is helpful to realize where
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and to what extent distortions mostly happen on the cortical surface, because the

surface registration is performed only on the spherical representation of the cortical

surface. We propose two metrics to analyze the areal distortion (compression and

expansion) caused by the surface flattening.

(a) (b)

Figure 2.39: A triangle mapped from the cortical surface to a sphere. The triangle
pointed by the arrow in (a) is mapped to a sphere shown in (b). The radius of the
sphere is 100 mm.

The first type of areal distortion analysis is given to each triangle on the cortical

surface of one subject. For each triangle on the original cortical surface, pointed with

an arrow in Fig. 2.39a, it has a corresponding triangle on the sphere resulted by the

surface flattening, point with an arrow in Fig. 2.39b. The areal distortion of individual

triangle is calculated by:

Di =
A′i/A

′

Ai/A
(2.26)

where A′i is the area for triangle i on the sphere; A′ is the total surface area of the
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sphere; Ai is the area of triangle i on the original surface; A is the total surface area

of the original surface.

The other type of areal distortion analysis is to study the distortion at each

parcellation label. Assume there are n parcellation labels. The average surface area of

each labeled region is calculated across N testing subjects, denoted as Al, l ∈ [0, n−1].

The ratio of the surface area of each label to all labels is calculated as:

Rl =
Al

n−1∑
l=0

Al

(2.27)

2.6 Spherical Surface Registration

After the genus zero cortical surface is flattened successfully, the vertices, edges

and triangles on the highly folded cortical surface have been mapped onto a sphere

with limited distortions. In the spherical coordinate system, surfaces are represented

by 2D coordinates (θ, φ) when the radius r is fixed, so it is possible to match two

cortical surfaces using surface registration method in the spherical domain and the

deformation field can be generated having its vectors point to tangent directions.

Next, the deformation field can be used to warp labels from one surface to the other to

perform surface parcellation automatically. Yeo, et al. proposed the spherical demons

registration method for two spherical images[141][108]. It is a fast and landmark-free

surface registration method, which is extended from Diffeomorphic Demons image

registration in Cartesian coordinates onto spheres. A little review of the background

of Demons registration below will help us to understand better about the extended

method.
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Figure 2.40: The Maxwell’s demons thought experiment. The white dots represent
the cold gas and the dark dots represent the hot gas.

The demons registration was first proposed by Thirion in 1998[151], inspired

by Maxwell’s “Demons”. Maxwell first described a thought experiment in 1867 to

discuss how to break the second law of thermodynamics. Assume there is a container

that can be divided into two parts, A and B (see Fig. 2.40). At the beginning,

both parts have the same gas in them. Among the same gas, there are faster-than-

average molecules (hot gas) which move in higher velocities and slower-than-average

molecules (cold gas) which move in lower velocities. Imagine a demon standing at

the door between A and B. If the demon only allows hot gas to pass from A to B and

cool gas to pass from B to A, in the end, A will only have the cold gas and B will

only have the hot gas, which is contradictory to the second law of thermodynamics.

Thirion introduced the “demon” into the image registration. Assume we are

about to register a moving image M to a fixed image F , where M is a deformable

model. O is an object in F , which has a contour. A demon is situated at point P

of the contour of object O. It acts locally to push M toward inside of O if the local

part of M is labeled “inside”, and toward outside of O if it is labeled “outside”. It
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is assumed here that the correspondence, as the “inside/outside” label, between M

and F is known. The actual registration between M and F is implemented in an

iterative scheme. The goal of the demons registration is to find a deformation field

T ∈ T between the space M of the moving image M and the space F of the fixed

image F . T is a set of possible transforms. T is updated iteratively starting from T0

until the user specified number of iterations are finished.

There can be a group of demons guarding along the contour of object O.

Demons can be selected in different ways. The simplest way is to select all of the pixels

in F to be demons[152], so each image is treated as a set of iso-intensity contours. As

mentioned above, T is updated iteratively by calculating the displacement for each

point in F . In each iteration, the displacement can be considered as the effect of the

force of each demon at point P in F . The calculation of the displacement is derived

from the velocity of optical flow:

~v =
(m− f)(~∇f)

(~∇f)2 + (m− f)2
(2.28)

where ~v is the velocity or displacement of P ; m is the intensity of the current corre-

sponding point of P in M ; f is the intensity of P in F ; ~∇f is the intensity gradient

of P in F . After the current displacement is calculated (per iteration) as δT , the

current deformation field Ti for the space of the fixed image F is thus updated by

warping Ti with δT : Ti+1 = δT ◦ Ti. Then, a Gaussian filter is applied to smooth the

deformation field of the whole image, Ti+1.

In general, the demons registration starts with an initial deformation T0, which

can be an identity transform or a rigid transform resulted from the previous registra-



www.manaraa.com

89

tion. At the iteration i, the current transform Ti needs to be updated. It consists of

two steps (see Fig. 2.41):

1. For each demon P ∈ Df , compute the demons force as ~v in Eq. 2.28

2. Update Ti to Ti+1 using the displacement field for all of the demons in Df

where Df is a group of demons in the fixed image F .

Select Demons Df

Compute the Force between Ti(M) and F

Compute Ti+1 from Ti And the Force

Figure 2.41: The iterations in the demons registration. Each iteration consists of
two steps.

Source: adapted from Thirion’s paper[152][151].

Cachier et al. described the problem of image registration mathematically

using an energy function[153]. They introduced a hidden variable in the image reg-

istration: the correspondence C, which is a set of pairing between the two points.

Each point Pf in the fixed image F has a corresponding point Pm in the moving

image M that attracts Pf , so the correspondence of each point P in F is given by a

vector in C. Thus the two steps described above can be viewed as: the first step is to

search for a correspondence C between pixels in F and M , and the second step is to
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search for a transformation T that approximates the correspondence obtained from

the first step using any type of regularization method. Vercauteren et al. explained

the method further based on Cachier’s description to consider the demons registration

as the minimization of a global energy function[154], which consists of two variables,

the correspondence C and the transformation T :

E(C, T ) =
1

σ2
i

Sim(F,M ◦ C) +
1

σ2
x

dist(T,C)2 +
1

σ2
T

Reg(T ) (2.29)

Typically Sim(F,M ◦ C) = ‖F −M ◦ C‖2 is the similarity function between the

fixed image F and the warped moving image M ◦ C, dist(T,C) = ‖C − T‖ is the

distance between the transformation T and the correspondence C, and Reg(T ) =

‖∇T‖2 calculates the gradient of the transformation. Here, the correspondence C is

considered as the approximate realization of transformation T . C can be calculated

in step one above, while T is the desired transformation between F and M . T

can be approximated by the calculation of C plus some regularizations. As for the

parameters, σi accounts for the noise in the image intensity, σx accounts for the spatial

uncertainty of the correspondence, and σT controls the amount of regularization of

the transformation T , i.e. the smoothness of it.

The optimization of Eq. 2.29 can be obtained by searching over C and T

alternatively in two steps. The first step is to search for a correspondence C by

optimizing 1
σ2
i
Sim(F,M ◦ C) + 1

σ2
x
dist(T,C)2, with a given transformation T . The

second step is to search for a transformation T to optimize 1
σ2
x
dist(T,C)2+ 1

σ2
T
Reg(T ),

with a given C. It has been shown that if Reg(T ) = ‖∇T‖2, the second step can

be solved by convoluting C calculated from the first step with a Gaussian kernel or
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other vectorial regularization[155].

For the first step, C is calculated as adding a small deformation (displacement)

field on the given transformation T , and Vercauteren et al. showed that composition

is more geometrically meaningful than simple addition[151][121], so C ← T ◦ δT . For

a given transformation T , computing a correspondence equals to computing a small

displacement field δT by minimizing

ET (δT ) = ‖F −M ◦ T ◦ δT‖2 +
σ2
i

σ2
x

‖δT‖2 (2.30)

Then, Vercauteren et al. showed that Eq. 2.30 can be solved using a Taylor series

expansion and the Sherman-Morrison formula[154]. They also showed that the mini-

mization of Eq. 2.30 could be consistent with Thirion’s rule by choosing a specific form

of σi, and in that case, σx controls the maximum step length as: ‖δT (P )‖ ≤ σx/2.

In his PhD thesis, Vercauteren analyzed various calculations of the demons

forces that could be explained by different optimization strategies[156]. One of Ver-

cauteren’s most interesting contributions to the study of demons forces is that instead

of using the intensity gradient from the fixed image only, the symmetric forces that

use the intensity gradients from both of the fixed and the moving images could be

linked to the efficient second-order minimization (ESM). It was also shown in the

practical experiments, the symmetric forces could provide better result in the image

segmentation using Demons registration[121].

However, the optimization of Eq. 2.30 in the entire space of spatial transfor-

mation does not guarantee that the transformations are invertible. From the known

invertible nature of diffeomorphic transformations, Vercauteren et al. proposed the
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Figure 2.42: The illustration of the exponential map, as shown in Eq. 2.31. The
current transformation T is in a Lie group and if the update of it is calculated on the
Lie algebra, then the updated transformation shown in Eq. 2.31 remains in the same
Lie group.

diffeomorphic image registration to improve the Demons algorithm[154][121]. The

idea is to constrain the calculation of the optimization in Eq. 2.30 in the space of

diffeomorphisms. It is implemented as a Newton iteration on a general Lie group be-

cause the inverse mapping in any Lie group should also be a differentiable map[157].

Let G be a Lie group for the composition ◦. Any Lie group G defines an associated

real Lie algebra g, whose underlying vector space is the tangent space of G at the

identity element Id, which is supposed to capture the local structure of the group

G. In the case of real matrix groups, g and G are related with an exponential map

exp : g → G. The exponential map is a diffeomorphism from a neighborhood of

0 in g to a neighborhood of Id in G. With an update step δT on the Lie algebra

calculated by minimizing the cost function in Eq. 2.30, the current transformation T

on a Lie group for the composition ◦ can be updated through the exponential map
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(see Fig. 2.42):

T ← T ◦ exp(δT ) (2.31)

It was derived in the paper [121] that the first two terms in Eq. 2.29 can be approx-

imated by the first order expansion for the intensity difference function Sim(F,M ◦

C) = ‖F −M ◦ C‖2 and ‖δT‖ for the distance between two diffeomorphisms dist(T, T◦

exp(δT )). Then, the energy function for the first two terms in Eq. 2.29 has the same

expression as the one for the classical Demons. So, δT (P ) for a pixel P can be

calculated using the same formula as the displacement field in Demons registration

(Eq. 2.30), except that δT is not considered as the displacement field here, it should

be considered as a speed vector field[158]:

δT (P ) = −F (P )−M ◦ T (P )

‖JP‖2 +
σ2
i (P )

σ2
x

JP
t

(2.32)

where F (P ) is the intensity of P in the fixed image and M ◦T (P ) is the intensity of P

in the warped moving image; JP = −∇t
P (M ◦T ) with a standard Taylor expansion or

JP = −∇t
PF with Thirion’s rule, or JP = −1

2
(∇t

P (M ◦ T ) +∇t
PF ) with an EMS-like

update; σi(P ) estimates the local image noise at P and σx controls the maximum

step as ‖δT (P )‖ ≤ σx/2. t represents the transpose of matrix.

As mentioned at the beginning of this section, Yeo et al. showed that the

Demons algorithm can also be applied to spheres[141][108]. Let v represent the speed

vector field calculated by Eq. 2.32. Instead of being an arbitrary 3D vector as it is in

image registration, v can only be tangent to the sphere. Spherical Demons is similar

to classical demon registration, given that both processes seek the global minimization
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of the energy function as shown in Eq. 2.29 iteratively. Similarly, each iteration of

Spherical Demons will be two steps.

Figure 2.43: The transformation of a point on the unit sphere. Point P is mapped to
c(P ) by correspondence C. The angle between P and c(P ) is θ. The tangent vector
at P is pointing from P to c(P ).

Step one is to search for C to optimize the first two terms of Eq. 2.29, the

similarity Sim(F,M ◦ C), and the distance between the correspondence C and the

transformation T , dist(T,C), using a given T . Since the transformation now only

happens along the tangent vector on the sphere, both of the C and T can be repre-

sented by tangent vectors ~c and ~t. A point P ∈ S2 is mapped to point c(P ) ∈ S2

and point t(P ) ∈ S2 by transformations C and T (correspondence is also a kind of

transformation). Let TPS
2 be the tangent space at P and ~c(P ) ∈ TPS2 be the tangent

vector at P . ~c(P ) points along the biggest circle on the sphere which connects P and

c(P ) (shown in Fig. 2.43). Let the length of ~c(P ) be equal to the sine of angle between

P and c(P ) (as θ in Fig. 2.43), then the tangent vector ~c(P ) and the transformation
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c(P ) have the one-to-one correspondence over θ ∈ [0, π). With this length choice, the

tangent vector ~c(P ) can be represented by vector products of point P and point c(P )

as:

~c(P ) = −P × (P × c(P )) = −G2
P c(P ) (2.33)

where P and c(P ) are vectors starting from the center of the unit sphere, as shown in

Fig. 2.43; GP is a skew-symmetric matrix which is used to represent the cross-product

of P with any vector so that P × c(P ) = GP c(P ):

GP =

 0 −P (0) P (1)
P (2) 0 −P (0)
−P (1) P (0) 0

 (2.34)

where P (i), i = 0, 1, 2 is the vector element in 3D coordinates of P .

Similarly, the transformation T can be represented by vector P and its mapped

point t(P ). The distance between transformation C and T thus can be calculated

using tangent vectors ~c and ~t defined as in Eq. 2.33 of all of the vertices Pi, i =

0, ..., N − 1 on the sphere.

dist(T,C) =
N−1∑
i=0

∥∥~ti − ~ci∥∥ (2.35)

With the choice of distance dist(T,C) as in Eq. 2.35, the calculation of the

speed vector field in iteration i, ~v(i) in the first step of Spherical Demons can be

~v(i) = argmin
~v

∥∥Σ−1(F −M ◦ C)
∥∥2 +

1

σ2
x

N−1∑
j=0

∥∥∥~t(i)j − ~c(i)j ∥∥∥2 (2.36)

where F and M ◦ C are the scalar values associated with the vertices on the fixed

sphere and on the warped moving sphere. They are N × 1 vectors. Σ counts for the

variability of a geometry feature at each vertex, which is a N × N diagonal matrix.

σx counts for the spatial uncertainty of the correspondence.
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From the diffeomorphic Demons registration, the correspondence C can be

represented as the composition of T and exp(~v), T ◦ exp(~v). And by substituting ~c
(i)
j

with Eq. 2.34 and by substituting c(Pj) with the composition of T and the exponential

map of ~v, Eq. 2.36 becomes

~v(i) = argmin
~v

N−1∑
j=0

1

σ2
j

(
F (Pj)−M ◦

{
T (i) ◦ exp(~v)

}
(Pj)

)2
+ 1
σ2
x

N−1∑
j=0

∥∥∥~t(i)j +G2
j

{
T (i) ◦ exp(~v)

}
(Pj)

∥∥∥2 (2.37)

where σ2
j is the jth element on the diagonal of matrix Σ.

Each vector ~v of the tangent vector field ~v(i) in Eq. 2.37 has to be a 3×1 vector

in R3 tangent to the sphere at point P , so the problem in Eq. 2.37 is a constrained

optimization. Yeo et al. proposed that ~vP at point P on the sphere can be mapped

from a tangent vector ~zP at the origin of R2[108]

~vP =
[
~eP1~eP2

]
~zP = EP~zP (2.38)

where ~eP1 and ~eP2 are any two orthonormal 3× 1 vectors tangent to the sphere at P ;

~zP is a 2× 1 tangent vector at the origin of R2.

With Eq. 2.38, the problem in Eq. 2.37 becomes a unconstrained optimization

with respect to
{
~z
(i)
P

}
for all of the vertices {Pj, j = 0, ..., N − 1} on the sphere at

iteration i:

{
~z
(i)
P

}
= argmin{

~z
(i)
P

}
N−1∑
j=0

1

σ2
j

(
F (Pj)−M ◦

{
T (i) ◦ exp({Ej~zj})

}
(Pj)

)2
+ 1
σ2
x

N−1∑
j=0

∥∥∥~t(i)j +G2
j

{
T (i) ◦ exp ({Ej~zj})

}
(Pj)

∥∥∥2 (2.39)
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If we use fj(~z) and gj(~z) to represent the calculations for each point Pj in the

first and the second term of Eq. 2.39, it can be written as{
~z
(i)
j

}
= argmin{

~z
(i)
j

}
N−1∑
j=0

1

σ2
j

f 2
j (~z) +

1

σ2
x

N−1∑
j=0

‖gj‖2 (~z) (2.40)

As one can see, it is a non-linear least-squares optimization problem which can

be solved by the Gauss-Newton method. The fj(~z) and gj(~z) can be approximated

by Taylor’s expansions of them and reduce the non-linear least-squares optimization

problem to be the linear least-squares problem:{
~z
(i)
j

}
≈ argmin{

~z
(i)
j

}
N−1∑
j=0

1

σ2
j

(fj(~z = 0) +∇fj~z)2 +
1

σ2
x

N−1∑
j=0

‖gj(~z = 0) +∇gj~z‖2 (2.41)

where ∇fj is the gradient of fj(~z) with respect to ~z at jth vertex; ∇gj is the gradient

of gj(~z) with respect to ~z at jth vertex. The solution of this problem can give us the

update at iteration i for ~z
(i)
P of each vertex independently[108]

~z
(i)
P =

F (P )−M ◦ T (i)(P )

σ2
P

·
(
ET
P

[
1

σ2
P

~mP ~m
T
P +

1

σ2
x

TP (G2
P )TG2

PT
T
P

]
EP

)−1
ET
P ~mP (2.42)

where F (P ) is the scalar value of point P on the fixed sphere; M ◦T (i)(P ) is the scalar

value of point P on the warped moving sphere; T (i) represents the transformation at

the ith iteration. EP = [~eP1, ~eP2] consists of two orthonormal 3×1 vectors tangent to

the sphere at P ; ~mT
P is the 1×3 spatial gradient of the warped moving sphere M ◦T (i)

at P ; T TP is the 3× 3 Jacobian of transformation T (i) at P ; GP is the skew-symmetric

matrix given by Eq. 2.34; and the superscript T here means the transpose of the

matrix. There are two parameters in Eq. 2.42, σP and σx. The former is actually the

same as σj in Eq. 2.37, and the latter is the same as in Eq. 2.29.
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And the speed vector at P , ~v
(i)
P can be calculated by substitute Eq. 2.42 to

Eq. 2.38

~v
(i)
P =

F (P )−M ◦ T (i)(P )

σ2
P

EP

·
(
ET
P

[
1

σ2
P

~mP ~m
T
P +

1

σ2
x

TP (G2
P )TG2

PT
T
P

]
EP

)−1
ET
P ~mP (2.43)

In reality, the Levenberg-Marquardt algorithm (Levenberg’s contribution) is used

to avoid the non-invertibility of the matrix ET
P

[
1
σ2
P
~mP ~m

T
P + 1

σ2
x
TP (G2

P )TG2
PT

T
P

]
EP .

Levenberg’s contribution is to introduce an additional term to the matrix such that

Eq. 2.43 becomes

~v
(i)
P =

F (P )−M ◦ T (i)(P )

σ2
P

EP

·
(
ET
P

[
1

σ2
P

~mP ~m
T
P +

1

σ2
x

TP (G2
P )TG2

PT
T
P

]
EP + εI

)−1
ET
P ~mP (2.44)

where I is the 2× 2 identity matrix and ε is the non-negative damping factor which

is supposed to be adjusted at each iteration. The idea of adjustment for ε is that if

the reduction of the cost function is small, ε can be increased, and if the reduction of

the cost function is big enough, ε can be decreased to be a smaller value.

When we have the speed vectors ~v
(i)
P for all of the vertices on the fixed sphere

at iteration i, the exponential function of the speed vector field ~v(i), exp(~v(i)) can be

calculated by “scaling and squaring”[158]. And the correspondence C(i) of iteration

i is estimated as C(i) = T (i) ◦ exp(~v(i)).

Step two of the Spherical Demons is to optimize the last two terms of Eq. 2.29,

which are the distance between the correspondence C and the transformation T , and
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the regularization with respect to transformation T using a fixed correspondence C

T (i+1) = argmin
T

1

σx2
dist

(
T,C(i)

)2
+

1

σ2
T

Reg(T ) (2.45)

where the distance function has been defined as in Eq. 2.35.

The purpose of Eq. 2.45 is to find a smooth vector field T after we get the

correspondence C from step one. Yeo, et al. proposed an iterative smoothing approx-

imation to solve Eq. 2.45. At the ith iteration, the smoothing at vertex j is to parallel

transport the vectors from its neighbors and use the linear combination of them to be

the new vector field for vertex j. The weights of the linear combination are calculated

separately for the center vertex j and for its neighbor vertex k, which are the same

as the weights used in scalar smoothing (Eq. 2.11 and Eq. 2.12). We rewrite them

here just for convenience: ω(j, j) = 1
1+Nj exp(− 1

2λ
)

and ω(j, k) =
exp(− 1

2λ
)

1+Nj exp(− 1
2λ

)
for j 6= k,

where Nj is the number of neighboring vertices of vertex j. The number of iterations

and value of λ controls the effect of smoothing on the vector field. More iterations

and larger λ produce a greater amount of smoothing. It is necessary to point out that

the above approximation of the optimization in Eq. 2.45 is good on a uniformly dis-

tributed vertices of the sphere. This is one of the reasons that icosahedron resampling

is performed before registration.

The summary of the Spherical Demons algorithm is given in Algorithm 2.1[108].

Normally the registration stops after fulfilling the number of iterations specified by

the users, however we want to ensure the same level of global correspondence across

subjects. Therefore, the sum squared distance (SSD) of scalar values in the fixed
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Algorithm 2.1 The Spherical Demons Algorithm

Input: The fixed mesh F and the moving mesh M

Output: The deformation field C so that M ◦ C is close to F

Initialize T (0) to be an identity transformation or the transformation from a previous

registration

repeat

step 1. Given T (i),

foreach vertex j do

Compute ~v
(j)
P using Eq. 2.44

end foreach

Compute C(i) using “scaling and squaring”

step 2. Given C(i),

foreach vertex j do

Compute ~T
(i+1)
j using the iterative smoothing

end foreach

until convergence

mesh and the warped moving mesh
N−1∑
j=0

(F (Pj)−M ◦ C(Pj))
2 was employed to stop

the registration when the value of SSD does not change (judged by a small tolerance)

for more than 5 iterations.

However, the surface registration that is used in practice is not simply to ap-

ply the algorithm of Spherical Demons directly onto the fixed and moving spheres

mapped from the cortical surfaces of two human brains. It is a complex framework of

scalar values normalization, mesh resampling, and rigid and non-rigid registrations.

Fig. 2.46 shows the flowchart of the registration framework. Because it is used to

align two cortical surfaces together, it is called as the “pair-wise surface registration

framework”. To use it to register two cortical surfaces together, both of the moving
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surface and the fixed surface are required to carry various types of geometry features

as scalar values associated with vertices on the sphere. In this study, four types of

geometry features are required (“DistanceToPCIS”, “DistanceToPCAP”, “Distance-

ToHull”, and “MeanCurvature”). Please see Sec. 2.4 for details of calculating those

geometry features. Since the registration is performed in the spherical domain, we

assume both of the cortical surfaces to be registered can be mapped onto spheres.

Please see Sec. 2.5 for details of the surface flattening in this study. Fig. 2.44 shows an

example of the fixed sphere associated with geometry features and Fig. 2.45 shows an

example of the moving sphere associated with geometry features. All of our cortical

surfaces are mapped onto spheres with radius of 100, because with this radius, the

shortest edge length on the original sphere and the shortest edge length on the highest

resolution of icosahedrons meshes are similar to those on the original smoothed cor-

tical surface. It can be realized by adding a scale value to the unit sphere generated

by the surface parameterization.

The “pair-wise surface registration framework” is implemented in multi-resolution

levels. The approximation of Eq. 2.45 proposed by Yeo, et al. is based on the as-

sumption that both of the fixed and the moving spheres of the Spherical Demons have

uniformly distributed vertices[108]. To provide a uniform sampling of the spheres

prior to the registration, both of the fixed sphere and the moving sphere are resam-

pled using icosahedral regular spheres with four resolution levels: IC4, IC5, IC6, IC7.

IC4 represents the lowest resolution level with the smallest number of vertices and

triangles, while IC7 represents the highest resolution level with largest number of
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(a) DistanceToPCIS (b) DistanceToPCAP

(c) DistanceToHull (d) MeanCurvature

Figure 2.44: Scalar values from the cortical surface to the fixed sphere. These spheres
are used as fixed spheres in the piece-wise surface registration.

vertices and triangles. In each resolution level, there has to be a type of scalar value

that can drive the registration. As discussed in Sec. 2.4, the geometry features of

“DistanceToPCIS/AP”, “DistanceToHull”, “MeanCurvature” are in the scale from

coarse to fine, which is consistent with the characteristic of multi-resolution registra-

tion framework. They are used in the resolution levels that are also from coarse to

fine as: “DistanceToPCIS” in IC4, “DistanceToPCAP” in IC5, “DistanceToHull” in

IC6, “MeanCurvatue” in IC7.
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(a) DistanceToPCIS (b) DistanceToPCAP

(c) DistanceToHull (d) MeanCurvature

Figure 2.45: Scalar values from the cortical surface to the moving sphere. The
spheres are used as the moving spheres in the surface registration.

The original icosahedron is one of the five Platonic solids. It has 20 identi-

cal equilateral triangular faces, 30 edges and 12 vertices (as shown in Fig. 2.47a).

Starting from there, the regular meshes can be generated by subdividing the original

icosahedron iteratively. The regular meshes used in our experiments are generated by

4, 5, 6, and 7 repeated subdivision. The number of triangles, the number of vertices,

and the average edge lengths of them are given in Table 2.3. As the reference, the

number of triangles on the cortical surface is 70,000; the number of vertices is 35,002;
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Fixed Spheres Moving Spheres

Resampling

Scalar Values Normalization

Rotational + Nonlinear Spherical Registration

Deformation Field

Figure 2.46: The framework of the pair-wise surface registration.

the shortest edge length is about 0.39mm.

The linear interpolation is used to assign scalar values to vertices of IC4, IC5,

IC6, and IC7. For each vertex P on any regular mesh that is going to be used in

pair-wise surface registration (IC7, IC6, IC5, and IC4 with radius 100.0), the triangle

of the original sphere on which P is located must be found. Then, the scalar value of

P is calculated by interpolating the scalar values of three triangular vertices. The key

problem here is how to find this triangle. Ibanez et al. implemented it as searching

for the closest points using a k-dimensional tree and then going through the triangles

of all of the closest points and checking if P is “inside” of any of them or not[159].

Barycentric coordinates are used to determine whether P is “inside” of a triangle and

to calculate interpolation weights for P . The idea of planar barycentric coordinates

for a triangle in a plane is that the coordinates of P with respect to triangle ABC
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(a)

(b) (c) (d) (e)

Figure 2.47: The icosahedron meshes. (a) is the original icosahedron with 20 triangles
and then it can be subdivided iteratively into (b), (c), (d), and (e). The radius is
100.0mm.

(as shown in Fig. 2.48a) can be written as a weighted sum of coordinates of vertices

A, B, and C as

~P = b1 ~A+ b2 ~B + b3 ~C (2.46)

where b1, b2, b3 are the signed area coordinates which subject to b1 + b2 + b3 = 1. If

P is “inside” of the triangle, b1, b2, b3 should all be in (0, 1), and if P is on an edge

or a corner of the triangle, at least one of {b1, b2, b3} is zero and the rest are in [0, 1].

For the triangle in a plane, as shown in 2.48a, the barycentric coordinates of P can

be calculated as the signed area of subtriangle PBC, PCA, and PAB divided by

the area of the whole triangle ABC. 2.48b shows how we calculated the barycentric

coordinates on the spherical triangle ABC. The tangent triangle A′B′C ′ is generated

in the tangent plane (TPS
2) at point P . The planar barycentric coordinates calculated
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Table 2.3: The Regular Meshes Used to Resample the Original Cortical Sphere

Resolution Level No. of Triangles No. of Vertices Average Edge Length (mm)

IC4 5,120 2,562 6.92

IC5 20,480 10,242 3.46

IC6 81,920 40,962 1.73

IC7 327,680 163,842 0.86

in A′B′C ′ are used to interpolate scalar values of vertices A, B, and C to get the scalar

value of P .

(a) (b)

Figure 2.48: The illustration of barycentric coordinates on a plane and on a sphere.
(a) The interpolation in a triangle. (b) The barycentric coordinates on the spherical
triangle ABC.
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Assuming there are no “large” triangles on our spheres, we constructed a

triangle on the tangent plane (TPS
2 in Fig. 2.48b) at P by prolonging the vertices on

the sphere to the plane and use the planar barycentric coordinates calculated in the

tangent triangle to approximate the spherical barycentric coordinates at P . Thus, if

b1, b2, b3 of the tangent triangle A′B′C ′ are all in [0, 1], we would say P belongs to

triangle ABC on the sphere and its scalar value can be calculated using the linear

interpolation of scalar values of A, B, and C weighted by b1, b2, and b3 respectively,

as shown in Eq. 2.47.

SP = b1SA + b2SB + b3SC (2.47)

where SA, SB, and SC are the scalar values of vertices A, B, and C respectively; SP

is the scalar value calculated from linear interpolation weighted by the barycentric

coordinates.

Thus, the “DistanceToPCIS” of the original fixed and moving spheres (see

Fig. 2.44a and Fig. 2.45a) are resampled by icosahedron IC4; the “DistanceToP-

CAP” of the original fixed and moving spheres (see Fig. 2.44b and Fig. 2.45b) are

resampled by icosahedron IC5; the “DistanceToHull” of the original fixed and moving

spheres (see Fig. 2.44c and Fig. 2.45c) are resampled by icosahedron IC6; the “Mean-

Curvature” of the original fixed and moving spheres (see Fig. 2.44d and Fig. 2.45d)

are resampled by icosahedron IC7. The resampling results are given in Table 2.4.

Since the registration methods to be used to match two cortical surfaces are

scalar value based method, scalar values normalization is crucial for the accuracy

of the surface registration. We use different normalization strategies for the scalar
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Table 2.4: The Resampled Fixed Spheres and Moving Spheres

Scalars Resampled Fixed Spheres Resampled Moving Spheres

MeanCurvature

IC7

DistanceToHull

IC6

DistanceToPCAP

IC5

DistanceToPCIS

IC4

values of different types of geometry features, which is summarized in Table. 2.5 and

the detail of each normalization is given as the following.

The first geometry feature is the “DistanceToPCIS” (see Fig. 2.21a in Sec. 2.4).

The maximum and minimum values of it vary among subjects because of the inter-

subject variability of the brain size, so normalizing the distance values of “Distance-

ToPCIS” can help us remove that kind of variability. We also want to keep the
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Table 2.5: The Normalization of Scalar Values Before the Surface Registration

Scalars Normalization

MeanCurvature (IC7) Scalar Smoothing + Clamping

DistanceToHull (IC6) Histogram Matching

DistanceToPCAP (IC5) Piece-wise Linear Rescaling

DistanceToPCIS (IC4) Piece-wise Linear Rescaling

anatomical meaning of the values at zero to conserve our model assumptions of the

PC point at zero. Simple linear scalar rescaling lacks the capability to preserve the

zero values since the original maximum and minimum values are not fixed among

subjects. As shown in Fig. 2.49a, the input scalar values on the horizontal axis are

mapped to [-1,1] on the vertical axis. The original zero values in two inputs are

mapped to different values represented by P 1
0 and P 2

0 respectively, when the inputs

do not share the same maximum (max1 and max2) and minimum (min1 and min2)

values. In order to preserve the zero values of “DistanceToPCIS” during the rescal-

ing (normalization), we use the piece-wise scalar rescaling (see Fig. 2.49b) to map

the “DistanceToPCIS” into a fixed range of [-1,1]. “DistanceToPCAP” is the same

kind of geometry feature which is also affected by the brain size and we also want

to preserve its zero values to be where the central sulcus is located, so it is also nor-
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malized by piece-wise rescaling into [-1,1]. The results of piece-wise linear rescaling

of “DistanceToPCIS” and “DistanceToPCAP” on the spheres in the fourth and the

fifth row of Table 2.4 are shown in Fig. 2.50.

(a) (b)

Figure 2.49: The illustration of some scalar rescaling methods. (a) The simple linear
scalar rescaling. (b) The piece-wise linear scalar rescaling.

For the “DistanceToHull”, we also want to match the histogram of the rescaled

“DistanceToHull” on the moving sphere to the histogram of the rescaled “DistanceTo-

Hull” on the fixed sphere because we believe the distributions of this kind of distance

values should not vary among subjects. Histogram matching is one of the image pro-

cessing techniques to change the pixel values of input image so that the histogram

of it after the processing could approximate the histogram of a reference image. The

basic theory and the implementation on grayscale images are shown in Gonzalez’s

image processing book[123].
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(a) (b)

(c) (d)

Figure 2.50: The normalization by the piece-wise linear rescaling. (a) and (b) The
normalized “DistanceToPCAP” on IC5 of the fixed and the moving sphere. (c) and
(d) The normalized “DistanceToPCIS” on IC4 of the fixed and the moving sphere.
All of the scalar values are rescaled piece-wisely into [-1,1] and the spheres are colored
by the legends on the right of them.

We extend the histogram matching to the scalar values of spheres[143]. First,

the histograms of the scalar values on the input sphere (the moving sphere) and on

the reference sphere (the fixed sphere) are generated by setting the number of bins

(256), the maximum value (1.0) and the minimum value (0.0) between which the

histogram is going to be generated, as shown in Fig. 2.51. Then, let pi(i) and po(o)

denote the continuous probability density function (PDF) of the input sphere and the

output sphere (processed sphere) respectively. pi(i) can be generated from the input

sphere using its scalar values. It equals to “frequency” in Fig. 2.51 divided by the
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(a) (b)

Figure 2.51: The histogram matching of the “DistanceToHull”. (a) Before histogram
matching. (b) After the histogram matching.

total frequency which is the total number of vertices on the sphere. po(o) is unknown

but is expected to follow the shape of the PDF of the reference sphere. Histogram

matching is to find a transformation of each scalar value i to o so that po(o) will be

in a certain shape. The cumulative density function (CDF) is used to help finding

such transformations. For the input sphere,

s = T (i) =

∫ i

0

pi(w)dw (2.48)

where
∫ i
0
pi(w)dw is the CDF of the input sphere; w is the bound variable of the

intergration; T (i) is the transformation function at scalar value i; s is a random

variable. Next, assume we can calculate the CDF of the output probability density

function po(o) as:

G(o) =

∫ o

0

po(t)dt = s (2.49)

where t is the bound variable of the integration; G(o) is the transformation function
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at scalar value o; and s is calculated by Eq. 2.48. So, the new scalar value of the

output sphere o can be mapped from i of the input sphere as:

o = G−1(s) = G−1[T (i)] (2.50)

The results of histogram matching are shown in Fig. 2.51 as the change of

histogram of “DistanceToHull” on the moving sphere before (Fig. 2.51a) and after

(Fig. 2.51b) the matching. 2.51a shows the histograms of “DistanceToHull” on the

fixed sphere (in blue) and the moving sphere (in red). 2.51b shows the histograms

of the matched “DistanceToHull” on the moving sphere (in red) and the “Distance-

ToHull” on the fixed sphere (in blue). The “DistanceToHull” on the fixed sphere

is used as the reference of the histogram matching. As we can see, the histogram is

brought closer to the one of the reference sphere (the fixed sphere) after the histogram

matching.

The normalization of curvatures on the cortical surface consists of two steps.

The first step is the scalar smoothing, which is demonstrated in Sec. 2.4. The second

step is to further normalize the curvature value after the smoothing. As mentioned

in Sec. 2.4, signs of the Mean Curvatures on the cortical surface have the meaning

of recognizing the gyri and sulci, as positive for gyri and negative for sulci. If simply

normalizing them into [−1.0, 1, 0], it could cause the shift of curvature values so that

the histogram of it is not centered at zero anymore (see Fig. 2.52).

In order to preserve the sign of curvatures, “MeanCurvatures” are simply

normalized by clamping to remove extreme values. The clamping is illustrated in

Fig. 2.53. Unlike rescaling, clamping does not do linear transform on the scalars. It
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(a) (b)

Figure 2.52: The comparison of two different ways of normalization for mean curva-
tures on the cortical surface. (a) Linear rescaling of mean curvatures on the cortical
surface. (b) The surface with the clamped curvatures.

sets the scalar value of the input surface to be -1 if it is smaller than -1 and set it to

be 1 if it is bigger than 1, and keeps the values in [-1,1] as the same on the output

surface. Fig. 2.52b shows a cortical surface with the clamped curvatures.

Figure 2.53: The illustration of the clamping on the input scalar values.
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The linear interpolation used to resample the “MeanCurvature” by icosahe-

dron IC7 has the smoothing effects on it because the scalar value of the sample point

is the weighted average value of the vertices of the triangle that this sample point

is located in (see Eq. 2.47). It helps us smooth abnormally high curvatures with

absolute value bigger than 1.0 (see the value range of Fig. 2.44d and the resulted

range after the icosahedron resampling, first row in Table 2.4). Then, the clamped

“MeanCurvature” on the fixed and the moving spheres at resolution IC7 are shown in

Fig. 2.54. The scalar values in 2.54a does not change compared with the one shown

in Table 2.4 because they are already within [-1,1].

(a) (b)

Figure 2.54: The normalized “MeanCurvature” on IC7. (a) The fixed sphere. (b)
The moving sphere. The legends on the right of the figures are used to code the colors
on the spheres with clamped scalar values.

After the normalizations, the registration can be performed to match vertices

on the fixed sphere and the moving sphere together using different geometry features

in a multi-resolution fashion, starting from the lowest resolution level, IC4. As shown
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in Fig. 2.46, at each level, there is a rotational (rigid) registration followed by a

spherical demons (nonrigid) registration. The deformation field from the space of the

fixed sphere to the space of the moving sphere is what we expect from the whole

process of registration. It is saved as a vector field on the sphere starting from zero

vectors at the beginning of the process. The rotational transform obtained from the

rigid transformation can be transferred as a deformation field on the fixed sphere and

set as the initial deformation field to the spherical demons at the same level. Also,

the deformation field from the previous level of resolution can be upsampled by the

icosahedron sphere at the current level and be used as the initial deformation field

for the current level and so on, until both of the rotational and the spherical demons

registration at the last level of resolution is finished. The final deformation field is

obtained by resampling the deformation field of IC7 with the original fixed sphere, so

that the final deformation field can represent the transform from the original space

of the fixed sphere to the original space of the moving sphere.

The surface registration is fully automated with a few parameters that can

be used to tune the rigid and the nonrigid registrations. Table 2.6 and Table 2.7

list parameters for the rotational registration and the spherical demons registration

respectively. The parameters can control the behavior of the cost function of either

the rotational or the spherical demons registration. The actual values of parame-

ters in both tables here need tremendous amount of work to decide according to

the input spheres and scalar values on them, because using an inappropriate value

could lead the registration into the local minima, running too many iterations to cost
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Table 2.6: Parameters in Rotational Surface Registration

Name Function Recommended Value

Gradient Magnitude Tolerance Stop the registration when
the gradient magnitude of
the cost function is smaller
than this value

1e-6

Maximum Step Length Initial step length for gradi-
ent descent optimization

0.01

Minimum Step Length Stop the registration when
the current step length is
smaller than this value

1e-9

Relaxation Factor To relax the current step
length when gradient of cost
function changes its direc-
tion

0.9

Number of Iterations Maximum number of itera-
tions to complete the regis-
tration

30

extra amount of running time, or running too few iterations where the registration

has not yet converged. The recommended values in both of the tables are chosen

based on evaluation of the multi-demonsional parametric space using data from our

experiments. They can be changed by the user according to the data to be used.

The Versor Transform is used to apply a rotation to the space in the rota-

tional sphere registration[159]. The mean squared distance between scalar values on

the fixed sphere and scalar values on the warped moving sphere is used as the cost

function. The initial step length in searching for the optimization of the cost function

can be set using the “Maximum Step Length” shown in Table 2.6. The value of this
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parameter is adjusted accordingly to the resolution level it is used. For example, the

value of “Maximum Step Length” shown in Table 2.6 is the one used in level IC4 and

the value is divided by 2, 4, 8 when it is used in level IC5, IC6, IC7. The rotational

registration stops when either one of the following conditions is met. The first one is

the “Minimum Step Length”. If the current searching step is smaller than the value

of it, the registration stops. The second condition is the “Number of Iterations”. The

registration stops when the number of iterations have reached the specific value.

Table 2.7: Parameters in Spherical Demons Surface Registration

Name Function Recommended Value

ε Coefficient of the identity
matrix in Eq. 2.44

1
σ2
x

σx Controls the maximum
length of update velocity
field

√
8×
√

ShortestEdgeLength

Self Regulated Mode Adjust the value of ε and σx
at each iteration when it is
on

True

Minimum Metric
Change

Stops the iterations when
metric does not change sig-
nificantly

0.05

Number of Iterations Maximum number of itera-
tions to complete the regis-
tration

500

λ Controls the smoothing of
deformation field

1.0

Number of Smoothing
Iterations

Maximum number of itera-
tions to smooth the defor-
mation field

40
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As for the spherical demons registration, parameters shown in Table. 2.7 are

used to control the update of displacement at each vertex in each iteration, the

regulation of the registration which is the smoothness of the deformation field in

each iteration, and the criteria to stop the registration. There are three parameters

in Eq. 2.44 that is used to calculate the update vector at each vertex on a sphere,

σx, ε, and σP . σP accounts for the variability of a geometry feature at each vertex.

Higher value of σP means the current vertex has higher variability of the geometry

feature represent by the scalar value of it. We assume it is homogenous at all vertices

and set the value of it to be 1. ε is introduced by Levenberg as a coefficient to

multiply a 2× 2 identity matrix. It has a negative impact on the displacement as the

bigger ε is, the smaller the displacement will be. The value of σ2
x has the opposite

effect as the bigger σ2
x is, the bigger the displacement will be. We connect them as

ε = 1
σ2
x

and require the user to only set sigmax. As we can see from Eq. 2.44, the

bigger value of ε or the smaller value of σ2
x would result in smaller update of the

displacement. Following the advice of Yeo[108], we set the initial value of σ2
x at each

level of resolution to be 8 × shortestEdgeLength. However, in order to preserve the

geometry topology of meshes (no flipping triangles) when we calculate the update

for each vertex at each iteration in a certain resolution level, we have to monitor

the magnitude of each updated displacement to make sure it does not cause flipping

triangles. When “Self Regulated Mode” is turned on, it monitors the ratio of the

magnitude of the displacement at each vertex to the shortest edge length across the

sphere in each iteration. If the largest ratio among all vertices on the sphere is bigger
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than 1.5, which means the biggest magnitude of the displacement calculated in this

iteration is bigger than 1.5 times the shortest edge length on the sphere, it adjusts

values of ε and σ2
x and reruns the iteration to lower the magnitude. Using the “Self

Regulated Mode ” may cause extra running time, but it is highly recommended to

keep the registration process stable.

Setting the number of iterations for each resolution level could be tricky be-

cause we don’t know how many iterations would be enough for the optimization to

converge. We modified the implementation of Ibanez[160][161] by adding another

condition to stop the registration except for the “Number of Iterations”, “Minimum

Metric Change”. It is set to stop the iterations when the normalized metric change

(see the equation below) at the current iteration is smaller than the value of “Mini-

mum Metric Change”.

MetricChange(i) = abs

(
metric(i)−metric(i− 1)

metric(i− 1)

)
× 100 (2.51)

where metric(i) is the mean squared distance of scalar values between the fixed sphere

and the warped moving sphere at the ith iteration, and metric(i) is the mean squared

distance at the (i− 1)th iteration. Once the “Minimum Metric Change” is activated,

the “Number of Iterations” can be any reasonably big value, for example 500 in each

resolution level, as shown in Table 2.7.

The last two parameters in Table 2.7 are for the regulation of the deformation

field after updating it in each iteration. The smoothing is performed by assign the

weighted average magnitude of the deformation field in the first order neighborhood

of the center point. The weighted averaging is calculated independently in each
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dimension but the weight is the same for all dimensions. λ is the parameter used to

control weights for the center point and for its neighbors. Table. 2.2 shows the effects

of λ on the scalar value smoothing but it has the same effects on the vector field

smoothing. All neighbors share the same weight and neighbors here are the vertices

in the first order neighborhood of the center vertex which means they share an edge

with the center vertex. Bigger λ causes more smoothing on the deformation field.

Another parameter for smoothing the deformation field is the “Number of Smoothing

Iterations”. More iterations cause more smoothing. It is set to be 10 for FreeSurfer’s

data[108]. We set it to be 40 and 40 for resolution level IC4 and IC5; 30 for IC6; and

20 for IC7, according to the scalar values we used for each level.

At last, the spherical demons registration requires the user to specify the

sphere center as coordinates (x, y, z) and the sphere radius in millimeter (mm). It is

important that all of the input spheres share the same center and radius.

2.7 Label Propagation

Once two cortical surfaces are aligned with each other using the surface reg-

istration (Sec. 2.6), labels from the moving mesh can be propagated onto the fixed

mesh. An atlas with labels and geometry features is needed for the label propagation.

The atlas can be a single subject chosen from the training set or the population atlas

calculated from aligned subjects in the training set (see Sec. 2.8).

Fig. 2.55 shows the flowchart of steps taken in the label propagation. The atlas

is registered to the subject in the spherical domain. The deformation field generated
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Atlas Subject

Moving Sphere Fixed Sphere

Surface Registration

Deformation Field

Labels on Atals Labels on Subject

Figure 2.55: The framework of piece-wise surface registration.

from the registration is used to propagate labels from the atlas to the subject. A

simple example of propagating lobar labels is shown in Fig. 2.56. A single subject is

used as the atlas in the example. Labels on the atlas surface are given by mapping

labels delineated by a rater in the image space to vertices on the atlas surface. The

surface is parcellated into four (frontal, temporal, parietal, and occipital) brain lobes.

Labels on the atlas’ cortical surface (Fig. 2.56a) are mapped to corresponding vertices

on its spherical representation (Fig. 2.56b).

The deformation field from the fixed (sphere) space to the moving (sphere)

space is generated using the multi-resolution spherical registration mentioned in

Sec. 2.6. The real deformation field generated by the multi-resolution registration

is in the highest resolution level (IC7) but it can be resampled and correspond to

vertices on the original fixed sphere. It is saved as a vector in the tangent plane of
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each vertex on the fixed sphere, as shown in Fig. 2.56d. Using the deformation field,

labels on the atlas sphere can be warped and applied to the subject sphere by the

nearest-neighbor interpolation (see Fig. 2.56c), which is then mapped back onto the

subject’s cortical surface (see Fig. 2.56e). The subject’s manual labels are shown in

Fig. 2.56f for the sake of visual evaluation.

To evaluate the result, we compare the automated labels with the manual

labels using similarity indices. There are two commonly used similarities indices,

Dice and Jaccard. Both of them can be used to calculate the similarities of two sets

of labels on cortical surfaces of our subjects. If a cortical surface is labeled both by

the automated and manual labels, let A denote the surface area that is labeled as the

“frontal lobe” according to the manual labels, and let B denote the surface area that

is labeled as the “frontal lobe” according to the automated labels. Dice and Jaccard

indices can give us a value between 0 and 1 to show how much the automated “frontal

lobe” is similar with the manual “frontal lobe”. The Dice index can be calculated as

D =
2 |A ∩B|
|A|+ |B|

(2.52)

where D is the value of Dice index. And the Jaccard index is calculated as

J =
|A ∩B|
|A ∪B|

(2.53)

where J is the value of Jaccard index.

In practice, A or B is evaluated using the surface area of polygons (triangles)

of the cortical surface that is covered by a certain label. If only one point in a triangle

is assigned by the certain label value, a third of the triangle’s area is added up into
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(a) (b) (c)

(d)

(e) (f)

Figure 2.56: An example of label propagation. (a): Lobar labels on the atlas surface.
(b): Lobar labels on the atlas sphere. (c): Warped atlas labels on the subject sphere.
(d): The deformation field used to warp atlas labels onto the subject. (e): The
propagated atlas labels on the subject surface. (f): The manual labels on the subject
surface. Each label value represents a lobar region: 1 frontal lobe, 2 temporal lobe, 3
parietal lobe, 4 occipital lobe.

the sum of area belongs to that label. If there are two points, two third will be added.

In detail, |A ∩B| is calculated as the area of triangles with its point(s) assigned by

both of the automated and the manual method with this particular label. |A| + |B|



www.manaraa.com

125

is calculated as the sum of the area of triangles with vertices assigned by the manual

method plus the area of triangles with vertices assigned by the automated method.

|A ∪B| is calculated as the area of triangles with vertices assigned by the manual

method or the automated method. Both Dice and Jaccard indices tell us how much

two pieces of the surface, labeled with the same value, overlap each other. When

there is no overlapping, Dice and Jaccard both are equal to 0.0 and when there is a

completely overlapping, both of them are equal to 1.0. The relationship between Dice

and Jaccard is D = 2J/(1 + J) or J = D/(2−D). Since Dice and Jaccard is always

interchangeable, we choose Dice to evaluate the similarity between manual labels and

proposed automated labels.

(a) (b) (c)

Figure 2.57: The situations of overlapping between A and B.

According to Eq. 2.52, when A and B have no overlapping, A∩B is empty as

shown in Fig. 2.57a. The Dice index D is zero. When A and B partially overlap with

each other as shown in Fig. 2.57b, the value of D is within (0.0, 1.0). When A and B

keep covering the same amount of area but with more overlapping, the denominator of
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Eq. 2.52 keeps the same value but the value of the numerator (intersection) is bigger.

In an extreme situation, when B is completely inside of A as shown in Fig. 2.57c, the

value of D equals to 2|B|
|A|+|B| . Although the value of D itself is incapable of recognizing

whether A and B is partially overlapped or one is inside of the other, it still can give

an idea about the similarity of A and B for the same label value from a set of manual

labels and a set of automated labels.

Six subjects were enrolled voluntarily into an MR imaging protocol with in-

formed written consent obtained in accordance with the institutional review board at

the University of Iowa. The MR protocol acquired three image sets: T1, T2, and PD

weighted scans. The images were obtained on a GE Signa 1.5T MR scanner. The T1

weighted scan was acquired using a 3D spoiled recalled gradient echo sequence with

the following scan parameters: TE = 5 ms, TR = 24 ms, flip angle = 40◦, NEX = 2,

FOV = 26 x 19.2 x 18.6 cm, matrix = 256 x 192 x 124. The PD and T2 weighted

scans were acquired using a fast spin-echo sequence with the following parameters:

TE = 28/96 ms for the PD and T2 respectively, TR = 3000 ms, slice thickness/gap

= 3.0 to 4.0 mm / 0.0 mm, NEX = 1, FOV = 26x26 cm, matrix = 256 x 192, ETL

= 8.

All of the MRI data were analyzed using the BRAINS AutoWorkup pipeline,

which included preprocessing (see Sec. 2.2), surface generation (see Sec. 2.3), and

surface geometry features calculation (see Sec. 2.4). The first part is the image pre-

processing. It adjusts the T1 image according to the AC-PC line that starts from

the anterior commissure (AC) and ends at the posterior commissure (PC). When it
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adjusts (rotates) the T1 image, it also resamples it into an isotropic image in all three

dimensions (axial, sagittal, and coronal). The preprocessing also registers T2 image

with T1, strips skull to keep only brain region, corrects the intensity inhomogeneity,

rescales the intensity to 0 to 255, and generates the tissue classified image. The sec-

ond part of AutoWorkup is to generate topologically corrected cortical surfaces for

both hemispheres. In order to do that, it has to fill up ventricles and other subcortical

regions to make sure the final surface is a closed surface. Then, the left and right

hemispheres are separated using a left and a right hemisphere mask. The cortical

surface of each hemisphere is generated after the topology correction is applied. The

surface decimation is applied to the raw surface to reduce the number of vertices and

triangles and the surface smoothing is applied following the decimation to generate a

smoothed surface which is located at the boundary of the parametric ribbon of white

matter and gray matter. Only the cortical surface of the left hemisphere is used to

test the label propagation from a single subject atlas here.

Lobar labels were manually delineated in the volumetric image space by a rater.

The labels were then mapped onto the cortical surfaces. The cortical surface of one

of the subjects was selected as the atlas. The atlas was selected by having the median

volume of the gray matter plus the white matter among six subjects. Labels from

the atlas surface were propagated to the rest of subjects using the method described

above in this section. The propagated (automated) labels were then evaluated using

Dice indices to show their similarities with the manual labels. Results are given in

Sec. 3.2.
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2.8 Surface Atlas Generation

A cerebral cortex atlas that is useful in the cortical parcellation has to include

at least two types of information: a standard coordinate system and a representation

of anatomical structures that exists in a population. A standard coordinate system is

need to align all cortical surfaces with the atlas and to do computational study among

a large population of subjects; a good representation of anatomical structures are need

to represent common structures (not biased by a single subject’s structure) while keep

the geometry values “sharp” enough to be able to drive the surface registration. The

gradient of scalar values will be small if the average atlas is too smoothed. A review

of methods that have been used by different groups to generate the cortical surface

atlas was introduced in the Sec. 1.3 of Chap. 1.

To avoid the bias of using a single subject as the atlas, we generate the popula-

tion atlas from a group of training subjects in an efficient way. The population average

is generated by registering training subjects to a template, which is chosen randomly

from the training set. Specifically, the first subject is chosen as the template. The

multi-resolution pairwise surface registration framework proposed in Sec. 2.6 is used

to register any other training subject (the moving surface) to the first training subject

(the fixed surface) in the spherical domain. Each pair-wise registration produces a

deformation field that deforms space (vertices) of the template (fixed) sphere to the

space of the subject (moving) sphere by giving each vertex a displacement vector in

the tangent plane along the sphere. The illustration of the deformation field is shown

as Fig. 2.56d. Then, the deformation field is used to resample scalar values from the
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training subject and map them onto the atlas space, in which the average scalar value

is calculated. The whole process is shown as the flowchart in Fig. 2.58.

Template/Subject 0

Subject 2Subject 1 ...Subject i... Subject n

DF 0 DF 1 ...DF i-1... DF n-1

Scalar 2Scalar 1 ...Scalar i... Scalar nScalar 0

Average Scalar Value

Figure 2.58: The flowchart of generating the average population atlas. “DF” stands
for the “Deformation Field” and “Scalar” stands for scalar values on the corresponding
subject.

35 training subjects were chosen randomly from 49 subjects enrolled volun-

tarily with informed written consent obtained in accordance with the institutional

review board at the University of Iowa to generate the population atlas of the cor-

tical surface. The MRI scans of them were acquired using the protocol mentioned

in Sec. 2.1. In order to generate a generalized atlas which incorporates a wide range



www.manaraa.com

130

of anatomical variance of cortical structures, we use a group of male subjects, with

a wide range of age, and with different clinical status (healthy and unhealthy). The

ages of 35 training subjects are between 12 and 41, with the average of 25.6 and

the standard deviation of 6.3 years. Among 35 subjects, 19 are healthy controls, 14

are diagnosed as schizophrenia patients, 1 has delusion disorders, and 1 has major

depression.

All MRI scans of 35 subjects are input into BRAINS AutoWorkup to auto-

matically generate topologically corrected cortical surfaces for the left and right hemi-

spheres respectively. Each vertex of the cortical surface is assigned with scalar values

of geometry features such as “DistanceToPCIS”, “DistanceToPCAP”, “DistanceTo-

Hull”, “MeanCurvature”, and “CorticalThickness”. The last geometry feature is not

used in the surface registration described in Sec. 2.6 to align cortical surfaces together

but it can be stored on the surface for the future analysis.

The process in BRAINS AutoWorkup that takes subject’s MR images (T1-

and T2- weighted) and generates the left and right hemisphere cortical surfaces in-

cludes three parts: preprocessing, surface generation, surface geometry calculation,

as described in processing the subjects’ data that have been used to test lobar labels

propagation in the last section.

Then, 35 labeled cortical surfaces of left hemisphere are given to the BRAINS

SurfaceAtlas to generate a surface atlas automatically. The BRAINS SurfaceAtlas is

a program in BRAINS software that can be used to do automated surface analysis

and parcellation. BRAINS SurfaceAtlas maps each cortical surface onto a sphere with
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100 mm radius. All sets of scalar values (of geometry features and manual labels)

are also mapped onto vertices of the sphere. Then, each surface sphere of 34 subjects

are registered to the surface sphere of the first subject which is used as a template

subject here. The framework of the multi-resolution surface registration on spheres

are discussed on page 104 in Sec. 2.6. The parameters used in rigid and nonrigid

surface registration are shown as Table 2.6 on page 117 and Table 2.7 on page 118.

As mentioned in Sec. 2.3, all cortical surfaces generated in this study contain

35,002 vertices which compose to 70,000 polygons (triangles). When the cortical

surface is mapped onto a sphere with 100 mm radius, all vertices and triangles have

the one-on-one correspondence between the original surface and the sphere, which

means, there are also 35,002 vertices and 70,000 triangles on the sphere. After each

pair-wise surface registration, a full mapping from each of the 35,002 template vertices

onto the subject sphere is generated. Each template vertex will fall into the space of a

triangle on the subject sphere. Each triangle has 3 vertices. As mentioned in Sec. 2.4,

each vertex on a surface can be associated with scalar values of “DistanceToPCIS”,

“DistanceToPCAP”, “DistanceToHull”, or “MeanCurvature”, which is generated by

the last part of BRAINS AutoWorkup to generate the cortical surface from T1 and T2

MR images. Thus, the scalar value of the template vertex mapped into a triangle of

the subject sphere can be calculated by interpolating the scalar values at 3 vertices of

that triangle. The linear interpolation of a point located in a triangle using the scalar

values of the triangle’s vertices is shown as Eq. 2.47 in Sec. 2.6 using the barycentric

coordinates. In this way, the scalar values on the subject sphere are resampled onto
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the vertices of the template sphere. Each training subjects scalar values are resampled

onto the template sphere and the average scalar values across all training subjects for

each vertex on the template sphere can be calculated. The results of calculating the

average scalar values of “DistanceToPCIS”, “DistanceToPCAP”, “DistanceToHull”,

and “MeanCurvature” on the template sphere are shown in Chap. 3 and since every

cortical surface and its sphere has the one-on-one correspondence for vertices and

polygons, the average scalar values can be mapped onto the original cortical surface

of the template as well. Those results are shown together in Sec. 3.3 of Chap. 3.

Each cerebral hemisphere of 35 training subjects, was divided into 49 regions

which were delineated by a rater. Details of the definition of those regions are given

by a series of papers by Crespo-Facorro and Kim[69][68][67]. Each label is stored as

an individual mask image overlapping in the same space of the T1 MR image. A

filter published in the Insight Journal is used to combine individual labels into a label

map image for each subject[162]. The filter gives each label an integer number so

that all label values in the output are consecutive, and it is set to ignore any collision

that could happen between two labels. The label map is applied onto vertices of the

cortical surface of the left and the right hemispheres. For each vertex on the surface,

the label of it is chosen to be the label of a pixel that is closest to the vertex in the

physical space.

Then, we combine and redefine the labels mapped from 49 labels from the

label map to be 24 labels and assign consecutive integers to the new labels as a set

of scalar values associated with vertices of the cortical surface. Table 2.8 shows the

http://www.insight-journal.org/
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Table 2.8: The Definition of Surface Parcellation Labels

Label Value Full Name Abbreviation Lobe
4 Anterior Cingulate Gyrus ACiG Frontal
5 Inferior Cingulate Gyrus ICiG Frontal
6 Inferior Frontal Gyrus IFG Frontal
11 Medial Frontal Gyrus MFG Frontal
13 Orbitofrontal Cortex OFC Frontal
14 Pre-central Gyrus PreCG Frontal
19 Superior Frontal Gyrus SFG Frontal
20 Straight Gyrus SG Frontal
3 Fusiform FU Temporal
9 Inferior Temporal Gyrus ITG Temporal
12 Middle Temporal Gyrus MTG Temporal
17 Parahippocampal Gyrus PHG Temporal
22 Superior Temporal Gyrus STG Temporal
23 Temporal Pole TP Temporal
1 Parietal PA Parietal
15 Posterior Cingulate Gyrus PoCiG Parietal
16 Pre-cuneus Gyrus PreCuG Parietal
18 Post-central Gyrus PoCG Parietal
2 Cuneus CU Occipital
7 Inferior Lateral Occipital Gyrus ILOG Occipital
10 Lingual LG Occipital
21 Superior Lateral Occipital Gyrus SLOG Occipital
0 Unknown UN None
8 Insula IS None

label value, full name, abbreviation, and location (as in brain lobes) of each label used

as the refined label compared with the lobar label in this dissertation. The actual

location of each label is shown in Fig. 2.59. In Table 2.8, the “Unknown” is for the

region that does not really belong to the cerebral cortex and includes the ventricles

and corpus callosum.

After a training subject is registered to the template (first) subject by the
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(a) The lateral view

(b) The medial view

Figure 2.59: The refined parcellation labels on the cortical surface. Regions are
marked with labels’ abbreviations. Please refer to Table. 2.8 for the full names. The
color code used for 24 labels with label value from 0 to 23 is given in Table. 2.9.

surface registration, a deformation field is generated to map vertices from the template

space to the subject space as a function of coordinates in the template space. Please

notice that the coordinates here are actually spherical coordinates because every

vertex is mapped on a sphere. The deformation field can be used to map vertices on

the icosahedron IC7 in the template space onto corresponding points in the subject

space. Those points mostly fall into triangles on the subject sphere (the corresponding



www.manaraa.com

135

Table 2.9: The Color Code for Refined Parcellation Labels

Label Value Abbreviation Red Green Blue
0 UN 0 0 153
1 PA 0 204 0
2 CU 153 51 0
3 FU 102 0 0
4 ACiG 255 0 0
5 ICiG 51 153 0
6 IFG 255 102 153
7 ILOG 255 255 102
8 IS 255 153 0
9 ITG 0 102 153
10 LG 0 153 0
11 MFG 0 255 0
12 MTG 255 51 255
13 OFC 51 255 255
14 PreCG 0 0 255
15 PoCiG 102 0 102
16 PreCuG 255 255 51
17 PHG 102 102 102
18 PoCG 204 0 0
19 SFG 204 0 255
20 SG 255 255 0
21 SLOG 0 255 255
22 STG 204 102 102
23 TP 51 0 255

point could be a corner or locate at an edge of a triangle as well). The nearest-neighbor

interpolation is used to resample manual labels from the subject to vertices of the

icosahedron IC7 in the template space. After all of the training subjects’ labels are

mapped onto the icosahedron IC7 in the template space. A probabilistic atlas can

be generated using that IC7 regular sphere, so the atlas is a regular sphere with

163,842 vertices and 327,680 polygons (triangles). It is called as “AtlasIC7” in this
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dissertation.

After all of training subjects’ labels are mapped onto the icosahedron IC7 in

the template space. The prior information of labels in training set can be saved on

the AtlasIC7.

First, the prior probability of each label at each vertex on IC7 can be calculated

as:

p(Lr = l1) =
# of times label l1 occurs at vertex r in the training set

number of training subjects
(2.54)

where p(Lr = li) denotes the probability of label l1 occurs at atlas vertex r. So, if all

training subjects are labeled as l1 at atlas vertex r, the probability of p(Lr = li) is

1.0. Likewise, if none of the subjects has label i at vertex r in the template space,

the probability of p(Lr = li) is 0.0.

(a) (b)

Figure 2.60: The types of neighborhood exist on icosahedron IC7.

In addition to the prior probability at a single vertex on the atlas, the prior

information in the neighborhood can also be generated to help us fully use the man-
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ual labels on the training set. Since AtlasIC7 is an icosahedron sphere that has a

homogenous geometry, there are only two types of neighborhood for any vertex on

AtlasIC7, shown as Fig. 2.60a and Fig. 2.60b. The prior probability of the labels at

the pair vertices of a center vertex r and one of it’s neighbors i is calculated as a

conditional probability:

p(Lr = l1|Li = l2) =
# of times that Li = l1 at i and Lr = l2 at r

# of times that Li = l2 at i
(2.55)

where p(Lr = l1|Li = l2) denotes the probability that label l1 occurs at vertex r when

label l2 occurs at vertex i.

Van Essen proposed a metric to evaluate the consistency of anatomical struc-

tures across training subjects, the index of surface alignment consistency (SAC)[112].

Assume there are N training subjects aligned in the atlas space, and each of them are

parcellated with n manual labels. For each label, there are Ntotal number of vertices

on the atlas surface that could possibly labeled as this label. The value of SAC for

this label is calculated as:

SAC =
N∑
i=1

(i− 1)n(i)

(N − 1)Ntotal

(2.56)

where n(i) is the number of vertices on the atlas sphere assigned to this label by only

one subject (i = 1), by two subjects (i = 2), etc., up to all N subjects in the training

set. The value of SAC is between 0 and 1, whereas 1.0 indicates perfect alignment

across all training subjects and 0 indicates no overlap among training subjects for this

label. The higher SAC value indicates the higher consistency among training subjects

for this label in the atlas space. Ideally, if there is no inter-individual variance for an
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anatomical label and if there is no error exists in the surface registration, the SAC

index for that label is 1.0.

2.9 Surface Parcellation Using A Probabilistic
Atlas

Once the probabilistic atlas is constructed from a group of training subjects

as described above, it can be used to automatically parcellate a new subject surface.

FreeSurfer uses Bayesian framework to solve the problem of automated surface par-

cellation given the observed surface geometry and prior probability of labels in the

training set. However, in this dissertation, we use a very efficient method to parcel-

late the subject’s cortical surface and apply minor adjustments to the resulting labels

guided by the local curvature information and pair label probability in the first order

neighborhood on that subject.

As mentioned in the section of “Data Acquisition” (Sec. 2.1, 49 subjects have

been enrolled in the experiment of this dissertation and MRI scans of them have been

collected using the protocol described in Sec. 2.1. 35 subjects have been randomly

chosen to be the training set to generate the population atlas which incorporates

average geometry features and probabilities of manual labels across training subjects,

and the remaining 14 subjects are used to test the proposed surface parcellation

framework.

The testing set consists of 6 healthy controls and 8 schizophrenia patients.

The ages of the subjects ranged from 16 to 39, with the mean: 24.9 years old and

the standard deviation: 6.5 years. The MR scans of these 14 subjects went through

BRAINS AutoWorkup pipeline to be processed and 28 genus zero cortical surfaces
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of both hemispheres were generated. Only 14 surfaces from the left hemisphere were

used as a testing set here.

As the training subjects, each of the testing subject also has manual labels

that can be mapped to vertices on its cortical surface. Originally, there were 49

labels manually delineated by a rater which are then combined and renamed to be

24 labels with consecutive label values as shown in Table 2.8. Next, cortical surfaces

were automatically parcellated and the resulting labeling was compared to the manual

rater.

First, the cortical surface of each subject were given to BRAINS SurfaceAtlas

to be registered with the atlas. The atlas is the population atlas with average geom-

etry features mapped on the template sphere. The test subject’s surface needs to be

flattened onto a sphere first (see Sec. 2.5 “Surface Flattening”). The the atlas sphere

was registered with the subject sphere in a multi-resolution registration framework

(see Sec. 2.6 “Spherical Surface Registration”). Then, the inverse deformation field

was used to map “MeanCurvature” from the subject sphere to the AtlasIC7, on which

the subject’s curvature is used to help adjust the labels for that subject.

As we generate the probabilistic atlas in the section of “Surface Atlas Genera-

tion” (Sec. 2.8), the prior probability of each label at each vertex is calculated using

Eq. 2.54. In reality, the maximum number of labels that could possibly occur at a

vertex is 6, so to predict a label at a vertex for one subject is to select one label out of

no more than 6 possible labels. The simplest way to predict is to use the most likely

label which is the label that has the agreement among major number of subjects in
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the training subjects at the vertex on the atlas space. Fig. 2.61 shows the most likely

labels on AtlasIC7 and the propagated most likely labels from the atlas sphere to one

of the testing subject (please refer to Sec. 2.7 “Label Propagation” for details). The

most likely labels can be used as an initial estimation for that subject.

(a) (b) (c)

Figure 2.61: An example of mapping the most likely labels to a subject. (a) shows
the most likely labels on AtlasIC7. (b) shows the most likely labels mapped from the
AtlasIC7 to the subject sphere using the deformation field generated by the surface
registration. (c) shows the most likely labels on the subject cortical surface. The
average Dice index of the similarity between the most likely labels shown here and
the manual labels is 0.87.

The surface parcellation using most likely labels is simple and fast. Ideally,

if the surface registration has no errors and if the variability of the cortical surface

structure is not so high, the most likely label method can give us good parcellation

results which have high agreement with manual labels judging by Dice indices. How-

ever, pre-assumptions above are not valid for the human cerebral cortex parcellation

because of following potential reasons:

• The surface registration can not bring a perfect alignment between the subject
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surface and the atlas surface.

• Scalar values on the atlas are average values. In some regions, they might

be over-smoothed so there is not enough anatomical information to drive the

registration.

• The subject has a unique folding pattern which is unlikely to be captured by

the average geometry features on the atlas.

Therefore, we propose an adaptive labeling method, which uses the most likely labels

on the atlas as an initial parcellation and combines the prior information in the

first order neighborhood, local curvature information, and locations (for example, the

occipital part of fusiform) together to make adjustments to the most likely labels.

Theoretically, the adjustment on the most likely labels can be made on all

vertices on the original cortical surface. However, considering the complexity of the

folding patterns on human cortical surfaces and the lack of consistent criteria to decide

the boundaries for different regions of interests, we choose to adjust boundaries at

only a subset of regions. They are the post-central gyrus (PoCG), anterior cingulate

gyrus (ACiG), fusiform (FU), inferior temporal gyrus (ITG), parahippocampal gyrus

(PHG), inferior lateral occipital gyrus (ILOG), and superior lateral occipital gyrus

(SLOG). As for labels that are other than these, the most likely labels can provide

satisfactory results because one or more of the following reasons:

1. Major sulci are located at the boundaries of those regions.

2. Substantial surface area are covered by those regions. The relationship between

the Dice index and the surface area for a certain label is discussed in Chap. 3.
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3. The locations are stable across subjects, such as the “Straight Gyrus” and

“Temporal Pole”.

4. The region of interests are close to the anatomical features that are used in the

registration. For example, the pre- and post- central gyri are close to the PC

point in the anterior-posterior direction.

For the conveniences to use the prior probabilities on the atlas and to incorpo-

rate a vertex’s neighborhood information into the adjustment, it is performed on the

regular sphere AtlasIC7. So it requires to map the subject’s geometry features needed

in the adjustment onto the AtlasIC7. They are “DistanceToPCIS” and “MeanCur-

vature”. The mapping is done by resampling the subject’s geometry features on its

deformed sphere (by the deformation field generated from the surface registration) for

an AtlasIC7 vertex using the linear interpolation. In summary, if a vertex is located

in the regions listed above, a list of information needed for the center vertex and its

first order neighbors are: current labels; the prior probability for each possible label

that could occur at those vertices (Eq. 2.54); the prior conditional probability for the

center vertex’s label on its neighbor’s label (Eq. 2.55); the mean curvatures; and the

distances to the PC point in the inferior-superior direction.

The first type of label adjustment is to adjust the boundary between two

regions in a one-way direction (“push” the boundary from label A to label B). It is

called “Type I Adjustment”. The first place to make this type of adjustment is located

at the inferior part of the boundary between the post-central gyrus (PoCG) and the

parietal (PA), marked by the white circle as in Fig. 2.62a. The location is constraint
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(a)

(b)

(c)

Figure 2.62: Locations of “Type I Adjustment” based on the most likely labels. (a)
circles the location of the to-be-adjusted boundary between the PoCG (in red) and
PA (in green). (b) circles the location of the to-be-adjusted boundary between the
ACiG (in red) and OFC (in light blue). (c) circles the location of the to-be-adjusted
boundary between the ITG (in air force blue). The labels in display are most likely
labels.

by the Euclidean distance from the vertex to the PC point and the probability of the

to-be-adjusted vertex being labeled as PoCG is not too low (> 0.1). The adjustment

is performed by pushing the boundary toward the parietal iteratively. Since the most
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likely label here tends to mistake the post-central gyrus to be the parietal, only one

direction adjustment (from the post-central to the parietal) is needed. The actual

adjustment of a vertex that is currently labeled as a “parietal” in the first order

neighborhood of a “post-central gyrus” vertex, has to be also assured by having the

same sign of the mean curvature value and the pair of labels (both “post-central”) at

those exact vertices on the AtlasIC7 can be referred in the training set, as the prior

probability of being labeled as “post-central” for each individual vertex and the prior

conditional probability as neighbors are all non-zero. The similar strategy is applied

to push the boundary from the orbitofrontal cortex (OFC) to the anterior cingulate

gyrus (ACiG), except that the location of the to-be-adjusted vertex is constrained

by the probability of being labeled as the superior frontal gyrus (SFG) is zero (no

adjustment is needed when the boundary is close to SFG). The region is marked by

the white circle in Fig. 2.62b. So is the strategy to push the boundary from the

inferior temporal gyrus (ITG) to the fusiform in the temporal lobe (see Fig. 2.62c).

If “Type I Adjustment” is considered to be typical adjustments, there are two other

types of adjustments that only apply to the characteristics at special boundaries.

The first “special boundary” is between the parietal (PA) and the superior lateral

occipital gyrus (SLOG). The boundary is marked by the white circle in Fig. 2.63.

The actual location of the part of boundary is constraint by recognizing it as also

“close to the inferior lateral occipital gyrus (ILOG)” (p(Lr = ILOG) > 0). It is

referred as the “the parietal-occipital boundary on the lateral surface of the brain”

in Crespo-Facorro and Kim’s paper based on which the original manual labels were
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(a) (b)

Figure 2.63: The boundary between PA (in green) and SLOG (in yellow). A part of
the boundaries are marked by the white circle. (a) marks the boundary based on the
most likely labels before any adjustment and (b) marks the new boundary after the
adjustment.

delineated[69]. In the paper, the boundary is defined by “the lateral surface points

located at the same level as the deepest points of the (parietal-occipital sulcus) POS”.

We studied the characteristic of the boundary on training subjects. It shows that the

sum of mean curvatures at vertices on the boundary should be negative, so if a subject

has a positive sum of mean curvatures, an adjustment is needed. The adjustment is

made by pushing the boundary toward the parietal using the same iterative strategy

above for “Type I Adjustment”, except that the sum of mean curvature at the new

boundary is calculated after each iteration. The adjustment stops when the sum value

becomes negative.

The last but not the least region that needs to be adjusted is the parahip-

pocampal gyrus (PHG). It is significantly affected by the surface generation. For
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(a) (b) (c)

Figure 2.64: The mislabel at the parahippocampal gyrus (in gray). (a) shows that
the PHG is mislabeled as the pre-cuneus gyrus (PreCuG) by the most likely labels
(in yellow). (b) shows the manual label at the same region. (c) shows the same region
after the label adjustment.

example, there is one subject out of 14 subjects in the testing set has the parahip-

pocampal gyrus marked by the white circle in Fig. 2.64b. Neither of the label ad-

justment strategies mentioned above would help to correct the mislabeling at that

region (most likely labels are shown in Fig. 2.64a). It can only be adjusted by

growing the current PHG region into regions with non-zero prior probabilities be-

ing labeled as PHG and also with non-zero pair conditional probabilities at current

PHG vertex and at to-be-adjusted non-PHG vertex. The region growing is con-

straint at the locations “close to lingual gyrus (LG) and pre-cuneus gyrus (PreCuG)”

((p(Lr = LG) > 0)&(p(Lr = PreCuG) > 0)). After the adjustment, the new PHG is

shown as the marked region in Fig. 2.64c. It raises the Dice index of PHG for that

subject from 0.0 to 0.52.

Since the adjustment at the boundary affects the labels at both sides of it,
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the actually adjusted regions are: PoCG, PA, SLOG, ILOG, FU, ITG, PHG, OFC,

and ACiG. The improvements judged by the Dice index are going to be shown in

Sec. 3.4 of the next chapter. The change of the Dice index between the automated

label and the manual label can be reflected by the coefficient of variance (CV), which

is estimated by:

ĉv =
s

x̄
(2.57)

where s is the sample standard deviation and x̄ is the sample mean.

Sec. 1.3 reviewed the surface parcellation in the FreeSurfer, a software appli-

cation developed at the Martinos Center for Biomedical Imaging (http://surfer.

nmr.mgh.harvard.edu/). The source code of the proposed surface parcellation is a

part of the open source software system BRAINS3, which can be download from its

website (http://www.nitrc.org/projects/brains/).

To be able to compare the proposed surface parcellation method with FreeSurfer,

the same MR scans of 49 subjects were processed using FreeSurfer and the cortical

surfaces are parcellated into 36 regions (34 cortical ROIs, insula and an unknown

region)[103]. The surface generated by FreeSurfer is in a different space compared to

the BRAINS surface. An iterative closest point (ICP) registration was used to bring

the surfaces into correspondence. To apply the FreeSurfer labels to the BRAINS sur-

face, the closest point on the FreeSurfer surface is used to define the label for each

vertex. Only the left cortical surface for each subject was used for this evaluation.

Fig. 2.65 shows FreeSurfer labels mapped on BRAINS surface and Table 2.10 lists

the region names corresponding with the number marked on the surface in Fig. 2.65.

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://www.nitrc.org/projects/brains/
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(a) Lateral View

(b) Caudal View

(c) Medial View

Figure 2.65: Parcellation labels defined in FreeSurfer. The full names of regions 0 to
33 that can be seen in different views are given in Table 2.10.
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Table 2.10: The Names of FreeSurfer Regions on A Cortical Surface

Number Region Number Region
0 Unlabeled subcortical region 17 Pars opercularis
1 Banks superior temporal sulcus 18 Pars orbitalis
2 Caudal middle frontal gyrus 19 Pars triangularis
3 Caudal middle frontal gyrus 20 Pericalcarine cortex
4 Cuneus cortex 21 Postcentral gyrus
5 Entorhinal cortex 22 Posterior-cingulate cortex
6 Fusiform gyrus 23 Precentral gyrus
7 Inferior parietal cortex 24 Precuneus cortex
8 Inferior temporal gyrus 25 Rostral anterior cingulate cortex
9 Isthmus-cingulate cortex 26 Rostral middle frontal gyrus
10 Lateral occipital cortex 27 Superior frontal gyrus
11 Lateral orbital frontal cortex 28 Superior parietal cortex
12 Lingual gyrus 29 Superior temporal gyrus
13 Medial orbital frontal cortex 30 Supramarginal gyrus
14 Middle temporal gyrus 31 Temporal pole
15 Parahippocampal gyrus 32 Transverse temporal cortex
16 Paracentral lobule 33 Insula

Please note that the frontal pole and the corpus callosum is missing from the surface,

so there are 34 labels in total to compose the FreeSurfer’s labels. They are marked

with consecutive numbers in Fig. 2.65.

The same procedure is taken to generate the surface atlas from 35 training

subjects. The population average of geometry features are the same, except the

probabilistic prior based on the FreeSurfer labels was calculated. Then, the most

likely labels were propagated from the atlas to individual subject, using the same

deformation field generated above when the atlas sphere is registered to the subject

sphere by a multi-resolution registration (see Sec. 2.7 for details). The parcellation is
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applied to generate automated labels on left cortical surfaces of 14 testing subjects.

The Dice index is calculated for each label on each subject to evaluate the resulting

parcellation with FreeSurfer’s parcellation.

There are many options to evaluate the accuracy of the automated parcella-

tion apart from the similarity index (Dice). The accuracy can be quantified as the

agreement between the automated parcellation and the manual parcellation at surface

points. FreeSurfer use the disagreement between two kinds of parcellation method

(automated vs. manual) calculated as the percentage of points to report the parcel-

lation error[65]. Similarly, we calculate the parcellation error for each vertex on the

AtlasIC7. It is called as “point-wise” parcellation error in this dissertation.
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CHAPTER 3
RESULTS

3.1 Surface Flattening

The amount of distortion at each triangle on the cortical surface of one subject

is shown in Fig. 3.1. It is calculated as Di for triangle i using Eq. 2.26. The surface in

Fig. 3.1 shows large expansion at the insula and some other regions close to the “split

boundary” where the cortical surface was split into two parts. Significant compression

is shown at regions furthest from the “split boundary”. They are the anterior part of

the frontal lobe and the posterior part of the occipital lobe.

(a) Lateral View (b) Medial View

Figure 3.1: The areal distortion at surface triangles. The values of distortion are
mapped with the triangles on the original surface of one subject. The surface is
colored by legend shown at the right side of (a).

The distortion for each label Rl is calculated with Eq. 2.27. It can be calculated

on cortical surfaces and on spheres of 14 testing subjects. Fig. 3.2a shows the ratio
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(a)

Figure 3.2: The areal distortion at parcellation labels. (a) shows the chart of the
ratio value in Eq. 2.27 for each label on cortical surfaces (left bar in blue at each
label) and the ratio value on spheres (right bar in red at each label).

value for each label (from 0 to 23) on surfaces (in blue) and on spheres (in red).

3.2 Lobar Labels Propagation Using Surface
Registration

(a) (b) (c)

Figure 3.3: The result of surface parcellation for brain lobes, frontal (dark blue),
temporal (light blue), parietal (tan), and occipital (red). (a) the mapping of labels
from the atlas to the subject with rigid registration only. (b) the manual labels
delineated by a rater. (c) the propagated labels from the atlas to the subject with a
multi-resolution registration.
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The label propagation method described in Sec. 2.7 is tested by propagating

lobar labels from the cortical surface of a single subject atlas to cortical surfaces of

5 testing subjects. To show the role of spherical demons registration in the label

propagation, Fig. 3.3 lists the left cortical surface of one testing subject with labels

propagated from the atlas subject by the deformation field generated only from rigid

surface registration (left), labels propagated by the deformation field generated from

the multi-resolution surface registration (right), and manual labels (middle). Dice

indices are used to calculate the similarity between manual labels and automated

labels. In Fig. 3.3a, the Dice index shows 0.92 for the frontal lobe, 0.76 for the

temporal lobe, 0.65 for the parietal lobe and 0.51 for the occipital lobe. After applying

the multi-resolution surface registration, the same subject surface is labeled as shown

in Fig. 3.3c, and the Dice indices then become 0.98, 0.90, 0.86 and 0.91 for the

corresponding lobes. Table 3.1 shows the Dice indices for all of five subjects and the

average Dice index across all lobes and all subjects is 0.89.

Table 3.1: Dice Indices for the Similarity Between Manual and Automated Labels

Lobe Subject1 Subject2 Subject3 Subject4 Subject5 Average
Frontal 0.98 0.95 0.96 0.92 0.95 0.95

Temporal 0.90 0.90 0.82 0.87 0.87 0.87
Parietal 0.86 0.87 0.88 0.75 0.87 0.85
Occipital 0.91 0.88 0.87 0.87 0.88 0.88
Average 0.91 0.90 0.88 0.85 0.89 0.89
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To show the improvement of using rigid followed by nonrigid registration in

a multi-resolution manner compared to using rigid registration only in labeling each

brain lobe, the average Dice indices of the overlapping between automated labels and

manual labels for brain lobes across 5 subjects are given in Table 3.2. The values

under “Rigid Only” are the mean and the standard deviation of Dice indices for

labeling brain lobes across 5 subjects using rigid surface registration only. The values

under “Rigid And Nonrigid” are the mean and the standard deviation of Dice indices

for labeling brain lobes across 5 subjects using rigid followed by nonrigid registration

in a multi-resolution manner. From the table we can see that, the multi-resolution

surface registration improved significantly on propagating brain lobes from the atlas

to a subject.

Table 3.2: Dice Indices for Brain Lobes Across 5 Subjects

Brain Lobe Rigid Only Rigid And Nonrigid
Standard Deviation Mean Mean Standard Deviation

Frontal Lobe 0.01 0.92 0.96 0.01
Temporal Lobe 0.06 0.71 0.88 0.04
Parietal Lobe 0.09 0.66 0.86 0.01
Occipital Lobe 0.16 0.57 0.88 0.02

The average time to finish a pair-wise multi-resolution surface registration

between two spheres is about 2 hours, but there are significant different for the time

consuming at each resolution level. Fig. 3.4 shows the exact minutes needed to finish
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Figure 3.4: The time cost for each resolution level of the surface registration.

the rigid and nonrigid registration at each resolution level for one example. From

the example shown in the figure, the last resolution level takes approximately 4 times

longer than the total of time first three levels take to finish the registration.

3.3 Surface Atlas Generation

This section presents results of generating our surface atlas from left cortical

surfaces of 35 training subjects. First, the population average of geometry features

across 35 subjects are calculated in the template space. Then, the prior probability

of manual labels on the training subjects are estimated on the icosahedron IC7 in

the template space (AtlasIC7). The first training subject is chosen to be the tem-

plate. Both of the prior probability of labels at individual vertex and the pair prior

probability of labels at the center vertex with it’s first order neighbor are calculated.

Please refer to Sec. 2.8 in Chap. 2 for details of the surface atlas generation.

Fig. 3.5 shows the average geometry features (“DistanceToPCIS”, “Distance-
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ToPCAP”, “DistanceToHull”, and “MeanCurvature”) calculated by following steps

in Fig. 2.58, on the atlas sphere (left column) and on the cortical surface of the

template (right column). Here, the average geometry features are mapped onto the

cortical surface of the template just to show the reasonability of the resulting average

values.

The prior information of labels at each independent vertex location can give

us the distribution of each label (such as “parietal” shown in Fig. 3.6a). It also shows

the homogeneity of folding patterns across training subjects. Fig. 3.6a shows the

region that could possibly labeled as “parietal” (with probability > 0.0) is fairly big.

However, from the color legend on the right side of it, we can see that a major part

of the region has more than 75% chance to be labeled as “parietal”, which means

the folding patterns are used to define “parietal” are relatively homogeneity and the

surface registration aligned them well. The “Number of Labels” shown in Fig. 3.8b

can also present the consistency of anatomical structures across training subjects. It

shows the number of possible labels that have occurred at a vertex in the atlas space.

The number should consistent with (equal to) the number of labels that have nonzero

probability at that vertex. Fig. 3.8b shows the atlas associated with “Number of

Labels” as scalar values. From the figure we can see that, most of regions have no

more than 3 possible labels to choose from.

The surface alignment consistency is calculated for each label using the Eq. 2.56.

It is an index to show the consistency of alignment for an anatomical region across

training subjects[112]. SAC = 1.0 indicates a perfect alignment at that region across
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: The atlas with population average values of geometry features. Both of
the sphere and the surface are colored by the legend on the right side of spheres.
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(a) (b)

Figure 3.6: The atlas with prior information of labels. (a) shows the probability of
being labeled as “parietal” on the atlas. (b) shows the number of labels that could
possibly be given at vertices of the atlas. The color legend of (a) and (b) is shown on
the right of each of them.

35 subjects, while SAC = 0.0 indicates no overlapping across them. The calcula-

tion is performed on the AtlasIC7 on which the probabilistic atlas is constructed.

Fig. 3.7 shows a chart of SAC index at each label. In the chart, labels are denoted

by abbreviations. Please refer to Table 2.8 for their full names.

Figure 3.7: The values of surface alignment consistency (SAC) of parcellation labels.
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(a) Lateral View (b) Medial View

Figure 3.8: The values of surface alignment consistency (SAC) on a cortical surface.
The surface is colored by the values of SAC using the color legend on the right side
of (a).

To better visualize the variability of different anatomical region, the value of

SAC is mapped onto the cortical surface of one subject. The vertex of the cortical

surface is assigned with the SAC value according to its manual label. The mapped

SAC on a cortical surface is shown as Fig. 3.8. The range of SAC across all 24 regions

is from 0.24 to 0.71.

3.4 Surface Parcellation Using A Probabilistic
Atlas

The surface parcellation performed by aligning the probabilistic atlas with the

testing subject and then predicting the labels on the subject is applied on 14 subjects.

The detail is described in Sec. 2.9 of Chap. 2. This section will first show results of

using this method to automatically parcellate cortical surfaces of 14 subjects into

24 labels defined in Sec. 2.8. Then, to validate the robustness of this method, it is
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(a) Manual Lateral (b) Automated Lateral

(c) Manual Medial (d) Automated Medial

Figure 3.9: The most likely labels and the manual labels on one of the testing
subject.The average Dice index between the manual labels and the automated labels
across all of the regions is 0.87.

trained and tested with FreeSurfer’s labels based on the same group of 49 subjects.

The automated labels that are generated using the most likely labels on one of

14 testing subjects are shown in Fig. 3.9. The manual labels for the same subject are

also shown for the visual evaluation. The mean value of the Dice index for each label

across 14 subjects is shown as the third column of Table 3.3, along with its standard

deviation. Please refer to Table 2.8 on Page 133 for full names of the labels. The

performance of the surface parcellation using only the most likely labels is done by

choosing the label that has the highest agreement among training subjects. Geometry
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(a) Mean Lateral (b) Mean Medial

(c) SD Lateral (d) SD Medial

Figure 3.10: The mean and standard deviation of Dice indices across training subjects
on one cortical surface. The surface is colored by the mean value (the first row) and
the standard deviation (the second row) of the Dice index across 14 training subjects
at the corresponding label. “SD” stands for the “Standard Deviation”.

features such as “DistanceToPCIS/AP”, “DistanceToHull”, and “MeanCurvature”

are used to align the atlas surface to the subject surface, before the most likely labels

can be assigned to corresponding locations on the subject surface. It performs poorly

at the place where there is no major folding pattern (sulci or gyri) to delineate the

boundary. The average Dice index for each label and the standard deviation of it is

mapped onto the cortical surface of one of the testing subjects, shown as Fig. 3.10.

Here, manual labels are used to decide which label the Dice measurement corresponds

to. From the figure, we can clearly see that the most likely labels produce relatively



www.manaraa.com

162

weak similarities at the temporal lobe and the occipital lobe.

Table 3.3: Weighted Average Dice with Surface Area Ratio

Label Name Surface Area (mm2) Dice Weighted Dice Weighted
(Ratio) (ML) Dice (ML) (AD) Dice(AD)

PA 9239 (.125) .87(±.04) .109 .87(±.03) .109
MFG 5602 (.076) .89(±.04) .066 .89(±.04) .066
PreCG 5495 (.074) .90(±.03) .066 .90(±.03) .066
SFG 5223 (.070) .89(±.03) .063 .89(±.03) .063
PoCG 5266 (.071) .88(±.04) .062 .88(±.03) .062
OFC 3892 (.052) .90(±.02) .047 .90(±.02) .047
STG 3322 (.045) .90(±.02) .040 .90(±.02) .040
PreCuG 3278 (.044) .82(±.05) .036 .82(±.05) .036
FU 3190 (.043) .72(±.09) .031 .74(±.08) .030
UN 3030 (.041) .93(±.02) .039 .93(±.02) .039
SLOG 2739 (.037) .75(±.08) .028 .77(±.08) .029
LG 2699 (.036) .87(±.04) .032 .87(±.04) .032
MTG 2573 (.035) .82(±.05) .029 .82(±.05) .029
CU 2526 (.034) .85(±.06) .029 .85(±.06) .029
IFG 2406 (.032) .86(±.04) .028 .86(±.04) .028
IS 2021 (.027) .91(±.02) .025 .91(±.02) .025
ITG 1972 (.027) .76(±.10) .020 .78(±.07) .020
ILOG 2025 (.027) .76(±.08) .020 .78(±.08) .021
ICiG 1659 (.022) .88(±.05) .019 .88(±.05) .019
PHG 1699 (.023) .76(±.22) .017 .79(±.10) .017
ACiG 1550 (.021) .83(±.08) .018 .83(±.07) .018
TP 1201 (.016) .84(±.07) .014 .84(±.07) .014
PoCiG 1149 (.015) .79(±.07) .012 .79(±.07) .012
SG 395 (.005) .78(±.11) .004 .77(±.12) .004
Average .84 .86 .84 .86

ML: Most likely labels; AD: Adjusted labels. See Table 2.8 for abbreviations.

By comparing figures at the first row of Fig. 3.10 with Fig. 3.8, we can see both

of the surfaces share the same dark regions at the temporal lobe and the occipital
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lobe. The first row of Fig. 3.10 shows the average Dice index of the most likely labels

across 14 testing subjects mapped onto the corresponding labels defined by manual

labels of the shown subject. Fig. 3.8 shows the SAC (surface alignment consistency)

indices mapped onto corresponding regions. Each region has one SAC index. The

index is used to quantify the consistency with which a parcel region was aligned on the

atlas surface for 35 training surfaces. It is reasonable to think that the performance

of the automated label is related with the consistency index of it in the training set.

Fig. 3.11 shows the linear regression between two sets of values at the corresponding

labels.

Figure 3.11: The linear regression between the Dice and SAC indices. The pair of
the Dice index and SAC index for each label are shown as the scattered points in
blue. There are 24 labels so there are 24 scattered points in the figure.

The surface area is believed to be another factor that can affect the perfor-

mance of the surface parcellation[103]. We calculate the surface area for each manual
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label on each training subject and then average the surface area for each label across

14 training subjects. A linear regression between the average Dice index and the

average surface area for 24 labels is performed to show the correlation between them.

The plot is shown in Fig. 3.12. The linear regression does not show strong correlation

between them, with R2 = 0.19. So, we can not simply assume that the region with

small surface area will have bad Dice index and the region with big surface are will

have good Dice index. For example, there are two red points in Fig. 3.12. The one

below the line represent the region labeled as the straight gyrus. It has a relatively

high Dice index because it’s location is close to a geometric feature used in the reg-

istration, even though it has a relatively small surface area. The red point above the

line in Fig. 3.12 represents the parietal region. It has the biggest surface area but its

Dice index is not the highest one.

Figure 3.12: The linear regression between the Dice index and the surface area. The
actual value that represents the surface area (vertical axis) of each label is the ratio
of the average surface area across 14 subjects with the sum surface area across all
labels and 14 subjects.
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However, the surface area of a label can be used to weight the value of its Dice

index when the average Dice index is needed for evaluating the similarity between

automated labels and manual labels over the whole surface, such that not all regions

are treated equally when an average Dice index is calculated across them. Table. 3.3

shows 24 parcellation labels in the descending order of surface area with the biggest

region on the top. The second column of Table. 3.3 shows the average surface area

in mm2 for each label along with its ratio among all labels. The average surface area

is calculated across 14 testing subjects according to their manual labels. The third

column shows the average Dice index across 14 subjects comparing the similarity

between the most likely label (marked as “ML” in the table) with the manual label,

with the standard deviation of it. The column next to it shows the weighted Dice

index which is the multiplication of the “Surface Area Ratio” and the “Dice” at the

same row for each label. The sum of the “Weighted Dice (ML)” is the weighted

average Dice for the most likely labels across 24 labels. The equation for calculating

the weighted average Dice Dw
i over n labels is:

Dicewi =
n∑
i=0

riDicei (3.1)

where
n∑
i=0

ri = 1.0. ri denotes the ratio of its surface area to the whole surface. Dicei

is used to denote the Dice index for label i.

The last two columns of Table 3.3 show the Dice indices and the weighted

Dice indices for the automated labels after the adjustment is made based on the

most likely labels. The details of the adjustment is describe in Sec. 2.9 of Chap. 2.
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The improvement caused by the label adjustment is difficult to be seen in Table 3.3

because it lists all 24 labels but not all of them are adjusted. As mentioned in Sec. 2.9,

the labels that are actually affected by the label adjustment are: PoCG, PA, SLOG,

ILOG, FU, ITG, PHG, OFC, and ACiG. Table. 3.4 lists the mean and standard

deviation (SD) of Dice indices for the most likely labels and for the adjusted labels

when they are compared with the manual labels at those regions. It also lists the

coefficient of variance (CV) of each of them. Because the adjustment is made based

on the most likely labels, Dice indices for the most likely labels are simply mentioned

as “Before Adjustment” in the table. The CV values of labels listed in Table 3.4 are

demonstrated with columns in Fig. 3.13. The calculation of CV is shown as Eq. 2.57

on Page 147. By showing the CV values in columns, it is easy to detect the change

made by the label adjustment on Dice indices. Big change can be seen at the PHG

(parahippocampal gyrus) and the ITG (inferior temporal gyrus).

Table 3.4: Dice Indices of Most Likely Labels and Adjusted Labels

Label Name Before Adjustment After Adjustment
Mean SD CV(%) Mean SD CV(%)

PA .873 .037 4.21 .873 .028 3.21
FU .723 .087 12.03 .741 .080 10.75
ACiG .826 .077 9.29 .833 .065 7.83
ILOG .762 .081 10.62 .780 .075 9.67
ITG .758 .101 13.36 .779 .066 8.47
OFC .898 .024 2.64 .901 .021 2.30
PHG .759 .225 29.63 .785 .099 12.58
PoCG .879 .037 4.21 .878 .025 3.21
SLOG .749 .077 10.27 .770 .078 10.10
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Figure 3.13: The comparison of CV before and after label adjustment at selected
labels.

So far, we have been showing results for each label across subjects. Fig. 3.14

shows the evaluation of the automated surface parcellation for each subject across

labels. The weight for each label is the ratio value shown within parentheses of the

second column in Table 3.3. The values shown in Fig. 3.14 are from 0.83 to 0.88, with

the median of 0.85.

The “point-wise parcellation error” which is calculated as the percentage of dis-

agreement between the automated parcellation and the manual parcellation is shown

on the template surface (see Fig. 3.15). Please see Sec. 2.9 for the detail of it. Fig. 3.15

shows that the majority of vertices are correctly labeled (with accuracy > 75%), with

the median accuracy at 92%, which is reported as 80% for the left hemisphere by

FreeSurfer[65]. As we can see from Fig. 3.15, most errors (with accuracy < 25%)

occur at the boundary between labels at which there are also high variabilities for
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Figure 3.14: The scatter plot of the weighted average Dice for subjects.

manual labels.

(a) Latera Viewl (b) Medial View

Figure 3.15: The point-wise parcellation error on the template surface. The color
legend is given on the right side of (a).

The distribution of accuracy across 14 subjects for the left hemisphere is given

in Fig. 3.16. It is shown as the histogram of the percent correct on the AtlasIC7. The

value of the percent correct is the percentage of agreement between the automated
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parcellation and the manual parcellation among 14 subjects at a vertex on the Atla-

sIC7. It can be calculated as 1.0 minus the value of “point-wise parcellation error”.

The original values along the y axis of Fig. 3.16 are the number of vertices on the At-

lasIC7. It is converted to the “Percent of Surface” by dividing the number of vertices

by the total number of vertices on AtlasIC7. From Fig. 3.16 shows that almost 60%

of the surface is correct more than 90% time using the proposed automated surface

parcellation. It is much higher than the value of 40% reported by FreeSurfer[65].

Figure 3.16: The histogram of the percent correct. The values along x axis are
actually the minimum value of bins. “0” denotes the bin with a range of [0, 0.1) and
“0.1” denotes the bin with a range of [0.1, 0.2), etc.

The accuracy of the parcellation is calculated for each subject, as the per-

centage of the number of correctly labeled points to the total number of points on

the original cortical surface with two sets of labels (automated and manual). The

scatter plot of the accuracy for 14 subjects is shown as Fig. 3.17. The accuracy in
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14 testing subjects are from 82.3% to 87.8%, with the median accuracy of 85.6%. It

is significantly higher than the median accuracy (78%) reported in a literature of the

surface parcellation[65].

Figure 3.17: The scatter plot of the accuracy for 14 testing subjects.

To compare the surface area of regions that are parcellated by the automated

labels and the manual labels, the mean and standard error of the surface area across

14 subjects at certain region is shown in Fig. 3.18. As can be seen, the surface area

of two sets of labeling system (automated vs. manual) is close to each other, while

the manual labeled regions have slightly bigger standard errors.

The overall Dice index across 34 regions and 14 subjects was about 0.81, with

a median value of 0.86. For visual comparison, the parcellation labels generated

from FreeSurfer (on the left) and from our method (on the right) mapped on the left

cortical surface of a testing subject are shown in Fig. 3.19. It should be noted that
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Figure 3.18: Comparison of mean and standard error of surface area at 12 parcellation
regions. For each region, the left column shows the mean and standard error of the
surface area with the automated label and the right column is for the manual label.

BRAINS processing takes approximately 1 hour to finish preprocessing and generate

genus zero cortical surfaces for both hemispheres. The automated parcellation on

each cortical surface takes approximately 2 hours. So it takes approximately 5 hours

to finish the whole parcellation for both hemispheres on a macbook pro with a 2 GHz

quad core CPU and a DDR3 RAM of 8GB. It is only 1/4 of the time that FreeSurfer

needs to finish its process. The much shorter processing time allows us to be able

to efficiently (fast and accurately) analyze data from a large population of subjects

which is quite common in clinical data analysis.
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(a) (b)

(c) (d)

Figure 3.19: The visual comparison of the surface parcellaiton with FreeSurfer. (a)
and (c) shows FreeSurfer labels in a lateral and medial view respectively. (b) and (d)
shows BRAINS labels in a lateral and medical view respectively.
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CHAPTER 4
DISCUSSION AND CONCLUSION

Automated parcellation of human cerebral cortex has a great potential to pro-

vide insight into the neurobiology of psychiatric diseases and response to the treat-

ment. An efficient auomated parcellation system can not only save researchers and

physicians from the labor-intensive process, and it provides a consistent delineation

while avoiding rater drift and bias. Results presented in Chap. 3 show that the auto-

mated surface parcellation pipeline proposed in this dissertation can be used to assign

different sets of labels to the cortical surface in an efficient and reliable way.

The implementation of rotational (rigid) registration and demons (deformable)

registration in multi-resolution levels can not only speed up the procedure, it can also

make it possible to use the combination of different geometry features to drive the

registration between two cortical surfaces. Among geometry features used in co-

registering surfaces, the first two, superior-inferior and anterior-posterior distance

from PC point were able to provide the registration a good initial starting position,

while the last two, distance from the surface to a convex hull and the mean curvature

of the surface provided richer anatomical information about gyri and sulci patterns

on the surface, and were used to register small anatomical features on the surface.

The method of generating the population atlas from training subjects is in-

novative and effective. Unlike some other groups’ method, it does not need manual

delineations[112] or iteratively updating the atlas[99][111]. The goal of constructing

the population atlas for surface parcellation is to build the surface representation of
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mean anatomical structures existing in a population of cerebral cortices. We did it by

aligning other subjects in the training set to the first subject using pair-wise surface

registration and averaging the measured geometry features in the spherical domain.

By visualizing resulting average values on the template surface, we can see that, the

measured value that is unique for the template itself is blurred out and only the val-

ues representing common geometry features is retained (see Fig. 3.5). Our population

averaging is generated from a mixture of both controls and patients with a wide range

of age, so it incorporates a wide range of anatomical variance of the cortical surfaces.

The cortical surface was delineated into 24 regions. The Dice index was used

to evaluate the similarity between the automated label and the manual label. It was

calculated using the surface area of regions delineated by both labels. Some regions

have big surface areas. For example, the parietal covers %12.5 of the surface area on

the cortical surface on average. Some regions have small surface area. For example,

the straight gyrus covers only %0.5 of the surface area on the cortical surface. When

we calculate the average Dice index across all regions, it may be biased on surface

area, therefore we also calculated the weighted average based on surface area. The

weighted average Dice metric was 0.86.

As for individual regions, the similarity index varies. Generally, regions having

consistent boundaries and locations have higher Dice indices(see Fig. 3.10). However,

it is not so related with the surface area of a particular region (see Fig. 3.12). It is

also not directly related to surface flattening. Comparing Fig. 3.10 with Fig. 3.1, we

can see lower Dice lobes (temporal and occipital) are compressed in the process of
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surface flattening but the compression also happens at the frontal lobe, which has

relatively higher Dice. The same situation can be observed at insula, with relatively

high distortion but also high Dice index. The performance of at individual region

is however, shown to be influenced by the proximity and the consistent anatomical

information that is included in the features used for registration.

FreeSurfer is the only other software that can also perform automated parcel-

lation on human cortical surfaces. The proposed method is shown to be able to give

comparable results, but in a much shorter time. Both of the proposed method and

the method in FreeSurfer can be used to automatically parcellate a cerebral cortex

into anatomically and functionally meaningful regions on its surface. However, the

two methods are fundamentally different in some major aspects:

• The surface generation is different (details are described in Sec. 2.3 and reference

paper[107] respectively). Both of the surfaces are located in between the gray

matter and white matter, but BRAINS3 surface has only 70,000 triangles and

35,002 vertices on it, which is about a quarter of the data size generated by

FreeSurfer (298,392 triangles and 149,198 vertices).

• The surface flattening used to map a cortical surface into the spherical domain is

different. Please see Sec. 2.5 and reference paper[107] for details of the method

in BRAINS3 and the method in FreeSurfer respectively.

• The geometry features used to encode folding patterns at the cortical surface are

different. The average convexity is calculated in FreeSurfer to represent folding

patterns[99], while BRAINS3 incorporates four types of geometry features to
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represent the locations and folding features for the patterns (please see Sec. 2.4

for details).

• The surface registration used to align cortical surfaces together in the spherical

domain is different. FreeSurfer aligns two surfaces in the spherical domain by

minimizing a cost function designed based on average convexities at vertices

on spheres. BRAINS3 integrates the spherical demons registration proposed

by Yeo[108] with rotational registration into a registration framework, which

applies geometry features of the cortical surface from coarse to refined scale

in implementing the registration in a multi-resolution manner (described in

Sec. 2.6).

• The average atlas is constructed differently. FreeSurfer uses an iterative atlas

building strategy to generate the population average[99]. BRAINS3 uses a single

registration scheme (see Sec. 2.8).

• The probabilistic atlas is built differently. FreeSurfer calculates three types

of probabilistic at each vertex on the atlas sphere[65], while BRAINS3 only

calculates the first two (see Sec. 2.8). The reason is that the relationship of

the measured value such as mean curvature with the boundary definitions of

anatomical labels is not clear. And we think the distribution model of the

measured value at each vertex for each label needs a further verification.

• After a new subject is aligned with the atlas, the classification of each vertex for

that subject in the atlas space is different. FreeSurfer uses a Beysian classifier

combined with MRF model[65]. BRAINS3 uses the prior probability of of labels
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at each vertex in the training set to assign an initial label and then modify the

initial classification based on the subject’s curvature and neighborhood label

prior information (details described in Sec. 2.8).

The most likely labels warped onto a subject’s surface is adjusted by incorpo-

rating the subject’s curvature information in re-evaluating some regions labels. Those

regions are: parietal, fusiform, anterior cingulate gyrus, inferior lateral occipital gyrus,

inferior temporal gyrus, orbital frontal cortex, parahippocampal gyrus, post-central

gyrus, and superior lateral occipital gyrus. From Table 3.4, we can only detect mild

increasement for the average Dice indices at the adjusted regions. A couple of regions

even slide down (inferior temporal gyrus and fusiform). It shows that the adjustment

method is lack of capability to catch the correct boundary for each subject because of

the high inter-individual variability at that region. A more intelligent adjustment is

required or a more sophisticated statistic model is need to improve label evaluations

at those regions.
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